Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of novel vaccines and therapeutics. Here, we report on diverse camelid single-domain antibodies to influenza hemagglutinin from which we generated multi-domain antibodies with unprecedented breadth and potency. Multi-domain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle EM structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multi-domain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide a groundbreaking new strategy to prevent infection with influenza virus and other highly variable pathogens.
SummaryIn this paper we present and discuss a novel, simple and easy to implement parametric modeling approach to assess synergy. An extended three parameter log-logistic model is used to analyse the data and calculate confidence intervals of the interaction indices. In addition the model corrects for the bias due to plate-location effects. The analysis is performed with PROC NLMIXED and SAS-code is provided. The approach is illustrated using data coming from an oncology study in which the inhibition effect of a combination of two compounds is studied using 96-well plates and a fixed-ratio design.
1 In this study, we aimed to characterize in vitro the effects of the benzofuran 5-HT 4 receptor agonists prucalopride, R149402 and R199715 and the indolic agents tegaserod and 5-HT in the atria of young pigs (10-11 weeks) and newborn piglets. 2 In the paced left atrium of young pigs, only 5-HT results in positive inotropic responses when administered cumulatively (maximal effect relative to isoprenaline ¼ 53%, pEC 50 ¼ 6.8); however, all agonists showed lusitropic effects. Noncumulative administration results in greater positive inotropic responses for 5-HT and induces moderate positive inotropic responses for the other agonists; these responses fade. 3 Phosphodiesterase (PDE) enzyme inhibition with 3-isobutyl-1-methylxanthine (IBMX; 20 mM) enhances the responses to cumulatively administered 5-HT (maximal effect ¼ 89%, pEC 50 ¼ 7.7) and reveals clear positive inotropic effects for prucalopride, tegaserod, R149402 and R199715; fading is abolished. The maximal effect of the benzofurans is less pronounced than that of the indoles. 4 In the spontaneously beating right atrium of young pigs, all agonists show chronotropic activity when administered cumulatively in the absence of IBMX, without fade. Benzofurans behaved as partial agonists compared to 5-HT (maximal effect ¼ 54%, pEC 50 ¼ 6.5). 5 In newborns, the inotropic activity of the agonists in the IBMX-treated left atrium was less pronounced than in the young pig; the same applied for the chronotropic response in the right atrium, except for 5-HT. 6 In conclusion, the atrial responses to 5-HT 4 receptor activation increase in the first months of life; the inotropic response is regulated by PDEs. Prucalopride, R149402 and R199715 are partial agonists compared to 5-HT.
Lithium is a potent mood-stabilizing medication in bipolar disorder. Despite 50 years of clinical use, the mechanism of action is unknown. Multiple effects have been attributed to lithium including the uncompetitive inhibition of inositol monophosphatase (IMPase). IMPA2, one of the genes that encode IMPase, is located in a region with linkage to bipolar disorder. Owing to the role of IMPase in cell signaling and the possibility that this enzyme is a target for mood-stabilizing drugs, we generated IMPA2(-/-) mice. Possible involvement of IMPase in complex behaviors related to affective disorders was assessed by monitoring the behavior of the IMPA2(-/-) mice in the forced swim test, the tail suspension test (TST), the elevated zero-maze and open field test. It has been described that chronically lithium-treated mice exhibit reduced immobility time in the forced swim test and decreased exploratory behavior. We found increased rearing of IMPA2(-/-) mice in the open field, suggesting an increased exploratory behavior. Although immobility time of IMPA2(-/-) female but not male mice in the forced swim test was reduced, no difference was found between male and female IMPA2(-/-) and IMPA2(+/+) mice in the TST and overall there was no clear effect of the deletion of IMPA2 on depression-like behavior. Frontal cortex IMPase activity and inositol levels in the IMPA2(-/-) mice did not differ from IMPA2(+/+) mice, but kidney inositol levels were reduced. In conclusion, phenotypic characterization of the IMPA2(-/-) mouse indicates that deleting IMPA2 does not mimic the effects of lithium treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.