Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A](2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Objective This study aimed to investigate and improve the usefulness of the 48‐hour BH4 loading test and to assess genotype for BH4 responsiveness prediction, using the new definition of BH4 responsiveness from the European guidelines, as well as an amended definition. Method Applying the definition of the European guidelines (≥100% increase in natural protein tolerance) and an amended definition (≥100% increase in natural protein tolerance or tolerating a safe natural protein intake) to a previous dataset, we first assessed the positive predictive value (PPV) of the 48‐hour BH4 loading test using a cutoff value of 30%. Then, we tried to improve this PPV by using different cutoff values and separate time points. Last, using the BIOPKU database, we compared predicted BH4 responsiveness (according to genotype) and genotypic phenotype values (GPVs) in BH4‐responsive and BH4‐unresponsive patients. Results The PPV of the 48‐hour loading test was 50.0% using the definition of the European guidelines, and 69.4% when applying the amended definition of BH4 responsiveness. Higher cutoff values led to a higher PPV, but resulted in an increase in false‐negative tests. Parameters for genotype overlapped between BH4‐responsive and BH4‐unresponsive patients, although BH4 responsiveness was not observed in patients with a GPV below 2.4. Conclusion The 48‐hour BH4 loading test is not as useful as previously considered and cannot be improved easily, whereas genotype seems mainly helpful in excluding BH4 responsiveness. Overall, the definition of BH4 responsiveness and BH4 responsiveness testing require further attention.
In phenylketonuria (PKU) patients, early diagnosis by neonatal screening and immediate institution of a phenylalanine‐restricted diet can prevent severe intellectual impairment. Nevertheless, outcome remains suboptimal in some patients asking for additional treatment strategies. Tetrahydrobiopterin (BH4) could be one of those treatment options, as it may not only increase residual phenylalanine hydroxylase activity in BH4‐responsive PKU patients, but possibly also directly improves neurocognitive functioning in both BH4‐responsive and BH4‐unresponsive PKU patients. In the present review, we aim to further define the theoretical working mechanisms by which BH4 might directly influence neurocognitive functioning in PKU having passed the blood‐brain barrier. Further research should investigate which of these mechanisms are actually involved, and should contribute to the development of an optimal BH4 treatment regimen to directly improve neurocognitive functioning in PKU. Such possible repurposing approach of BH4 treatment in PKU may improve neuropsychological outcome and mental health in both BH4‐responsive and BH4‐unresponsive PKU patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.