The presented study investigates the design and development of an autonomous morphing wing concept developed in the scope of the SmartX project, which aims to demonstrate in-flight performance optimisation with active morphing. To progress this goal, a novel distributed morphing concept with six translation induced camber morphing trailing edge modules is proposed in this study. The modules are interconnected using elastomeric skin segments to allow seamless variation of local lift distribution along the wingspan. A fluid-structure interaction optimisation tool is developed to produce an optimised laminate design considering the ply orientation, laminate thickness, laminate properties and actuation loads of the module. Analysis of the kinematic model of the integrated actuator system is performed, and a design is achieved, which meets the required continuous load and fulfils both static and dynamic requirements in terms of bandwidth and peak actuator torque with conventional actuators. The morphing design is validated using digital image correlation measurements of the morphing modules. Characterisation of mechanical losses in the actuator mechanism is performed. Out-of-plane deformations in the bottom skin and added stiffness of the elastomer are identified as the impacting factors of the reduced tip deflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.