The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Platinum-based chemotherapies such as cisplatin are used as first-line treatment for many cancers. Although there is often a high initial responsiveness, the majority of patients eventually relapse with platinum-resistant disease. For example, a subset of testicular cancer patients still die even though testicular cancer is considered a paradigm of cisplatin-sensitive solid tumors, but the mechanisms of chemoresistance remain elusive. Here, we have shown that one key determinant of cisplatin-resistance in testicular embryonal carcinoma (EC) is high cytoplasmic expression of the cyclin-dependent kinase (CDK) inhibitor p21. The EC component of the majority of refractory testicular cancer patients exhibited high cytoplasmic p21 expression, which protected EC cell lines against cisplatin-induced apoptosis via CDK2 inhibition. Localization of p21 in the cytoplasm was critical for cisplatin resistance, since relocalization of p21 to the nucleus by Akt inhibition sensitized EC cell lines to cisplatin. We also demonstrated in EC cell lines and human tumor tissue that high cytoplasmic p21 expression and cisplatin resistance of EC were inversely associated with the expression of Oct4 and miR-106b seed family members. Thus, targeting cytoplasmic p21, including by modulation of the Oct4/miR-106b/p21 pathway, may offer new strategies for the treatment of chemoresistant testicular and other types of cancer.
the most common malignant bone tumor in children and adolescents, occurs in a high number of cancer predisposition syndromes that are defined by highly penetrant germline mutations. The germline genetic susceptibility to osteosarcoma outside of familial cancer syndromes remains unclear.OBJECTIVE To investigate the germline genetic architecture of 1244 patients with osteosarcoma.DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing (n = 1104) or targeted sequencing (n = 140) of the DNA of 1244 patients with osteosarcoma from 10 participating international centers or studies was conducted from April 21, 2014, to September 1, 2017. The results were compared with the DNA of 1062 individuals without cancer assembled internally from 4 participating studies who underwent comparable whole-exome sequencing and 27 173 individuals of non-Finnish European ancestry who were identified through the Exome Aggregation Consortium (ExAC) database. In the analysis, 238 high-interest cancer-susceptibility genes were assessed followed by testing of the mutational burden across 736 additional candidate genes. Principal component analyses were used to identify 732 European patients with osteosarcoma and 994 European individuals without cancer, with outliers removed for patient-control group comparisons. Patients were subsequently compared with individuals in the ExAC group. All data were analyzed from June 1, 2017, to July 1, 2019. MAIN OUTCOMES AND MEASURESThe frequency of rare pathogenic or likely pathogenic genetic variants. RESULTS Among 1244 patients with osteosarcoma (mean [SD] age at diagnosis, 16 [8.9] years [range, 2-80 years]; 684 patients [55.0%] were male), an analysis restricted to individuals with European ancestry indicated a significantly higher pathogenic or likely pathogenic variant burden in 238 high-interest cancer-susceptibility genes among patients with osteosarcoma compared with the control group (732 vs 994, respectively; P = 1.3 × 10 −18 ). A pathogenic or likely pathogenic cancer-susceptibility gene variant was identified in 281 of 1004 patients with osteosarcoma (28.0%), of which nearly three-quarters had a variant that mapped to an autosomal-dominant gene or a known osteosarcoma-associated cancer predisposition syndrome gene. The frequency of a pathogenic or likely pathogenic cancer-susceptibility gene variant was 128 of 1062 individuals (12.1%) in the control group and 2527 of 27 173 individuals (9.3%) in the ExAC group. A higher than expected frequency of pathogenic or likely pathogenic variants was observed in genes not previously linked to osteosarcoma (eg, CDKN2A, MEN1, VHL, POT1, APC, MSH2, and ATRX) and in the Li-Fraumeni syndrome-associated gene, TP53.CONCLUSIONS AND RELEVANCE In this study, approximately one-fourth of patients with osteosarcoma unselected for family history had a highly penetrant germline mutation requiring additional follow-up analysis and possible genetic counseling with cascade testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.