Large vertebrates are strong interactors in food webs, yet they were lost from most ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for restoration of missing ecological functions and evolutionary potential of lost North American megafauna using extant conspecifics and related taxa. We refer to this restoration as Pleistocene rewilding; it is conceived as carefully managed ecosystem manipulations whereby costs and benefits are objectively addressed on a case-by-case and locality-by-locality basis. Pleistocene rewilding would deliberately promote large, long-lived species over pest and weed assemblages, facilitate the persistence and ecological effectiveness of megafauna on a global scale, and broaden the underlying premise of conservation from managing extinction to encompass restoring ecological and evolutionary processes. Pleistocene rewilding can begin immediately with species such as Bolson tortoises and feral horses and continue through the coming decades with elephants and Holarctic lions. Our exemplar taxa would contribute biological, economic, and cultural benefits to North America. Owners of large tracts of private land in the central and western United States could be the first to implement this restoration. Risks of Pleistocene rewilding include the possibility of altered disease ecology and associated human health implications, as well as unexpected ecological and sociopolitical consequences of reintroductions. Establishment of programs to monitor suites of species interactions and their consequences for biodiversity and ecosystem health will be a significant challenge. Secure fencing would be a major economic cost, and social challenges will include acceptance of predation as an overriding natural process and the incorporation of pre-Columbian ecological frameworks into conservation strategies.
This paper presents a method to find the optimal configuration for an electric vehicle energy storage system using a cascaded H-bridge (CHB) inverter. CHB multilevel inverters enable a better utilization of the battery pack, because cells/modules with manufacturing tolerances in terms of capacity can be selectively discharged instead of being passively balanced by discharging them over resistors. The balancing algorithms have been investigated in many studies for the CHB topology. However, it has not yet been investigated to which extend a conventional pack can be modularized in a CHB configuration. Therefore, this paper explores different configurations by simulating different switch models, switch configurations, and number of levels for a CHB inverter along with a reference load model to find the optimal design of the system. The configuration is also considered from an economically point of view, as the most efficient solution might not be cost-effective to be installed in a common production vehicle. It is found that four modules per phase give the best compromise between efficiency and costs. Paralleling smaller switches should be preferred over the usage of fewer, larger switches. Moreover, selecting specific existing components results in higher savings compared to theoretical optimal components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.