Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Although integrin alpha 2 subunit (ITGA2) mediates cancer progression and metastasis, its transfer by exosomes has not been investigated in prostate cancer (PCa). We aimed to determine the role of exosomal ITGA2 derived from castration-resistant PCa (CRPC) cells in promoting aggressive phenotypes in androgen receptor (AR)-positive cells. Exosomes were co-incubated with recipient cells and tested for different cellular assays. ITGA2 was enriched in exosomes derived from CRPC cells. Co-culture of AR-positive cells with CRPC-derived exosomes increased their proliferation, migration, and invasion by promoting epithelial-mesenchymal transition, which was reversed via ITGA2 knockdown or inhibition of exosomal uptake by methyl-β-cyclodextrin (MβCD). Ectopic expression of ITGA2 reproduced the effect of exosomal ITGA2 in PCa cells. ITGA2 transferred by exosomes exerted its effect within a shorter time compared to that triggered by its endogenous expression. The difference of ITGA2 protein expression in localized tumors and those with lymph node metastatic tissues was indistinguishable. Nevertheless, its abundance was higher in circulating exosomes collected from PCa patients when compared with normal subjects. Our findings indicate the possible role of the exosomal-ITGA2 transfer in altering the phenotype of AR-positive cells towards more aggressive phenotype. Thus, interfering with exosomal cargo transfer may inhibit the development of aggressive phenotype in PCa cells.
Although the utilization of selective BRAFV600E inhibitors is associated with improved overall survival in patients with metastatic melanoma, a growing challenge of drug resistance has emerged. CDC7 has been shown to be overexpressed and associated with poor prognosis in various cancers including melanoma. Thus, we aimed to elucidate the biological role of CDC7 in promoting Vemurafenib resistance and the anticipated benefits of dual targeting of BRAFV600E and CDC7 in melanoma cells. We performed exosomes-associated microRNA profiling and functional assays to determine the role of CDC7 in drug resistance using Vemurafenib-sensitive and resistant melanoma cells. Our results demonstrated that Vemurafenib-resistant cells exhibited a persistent expression of CDC7 in addition to prolonged activity of MCM2 compared to drug-sensitive cells. Reconstitution of miR-3613-3p in resistant cells downregulated CDC7 expression and reduced the number of colonies. Treatment of cells with low concentrations of CDC7 inhibitor TAK-931 sensitized resistant cells to Vemurafenib and reduced the number of cell colonies. Taken together, CDC7 overexpression and downregulation of miR-3613-3p were associated with Vemurafenib resistance in BRAFV600E- bearing melanoma cells. Dual targeting of CDC7 and BRAFV600E reduced the development of resistance against Vemurafenib. Further studies are warranted to investigate the clinical effect of targeting CDC7 in metastatic melanoma.
The utility of small extracellular vesicles (sEVs)-derived microRNAs (miRs) to segregate prostate cancer (PCa) patients according to tumor aggressiveness and ancestral background has not been fully investigated. Thus, we aimed to determine the diagnostic and prognostic utility of sEV-associated miRs in identifying aggressive PCa in African American (AA) and Caucasian (CA) men. Using a training cohort, miR profiling was performed on sEVs isolated from plasma of PCa patients. Top-ranked sEV-associated miRs were then validated in 150 plasma samples (75 AA and 75 CA) collected from two independent cohorts; NIH (n = 90) and Washington University (n = 60) cohorts. Receiver operating characteristic (ROC) curve, Kaplan–Meier and Cox proportional hazards regression were used to assess these miRs as clinical biomarkers. Among nine top-ranked sEV-associated miRs, miR-6068 and miR-1915-3p were enriched in sEVs collected from PCa patients compared to healthy volunteers. Moreover, miR-6716-5p and miR-3692-3p segregated AA from CA men and low from high Gleason score (GS), respectively. Upregulation of sEV-associated miR-1915-3p, miR-3692-3p and miR-5001-5p was associated with improved survival time, and only miR-1915-3p was associated with longer recurrence-free survival (RFS) as an independent prognostic marker. Taken together, we identified novel sEV-associated miRs that can differentiate PCa patients from normal, AA from CA and high from low GS and predicts RFS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.