The contribution to annual mortality of migrating monarch butterflies (Danaus plexippus) due to collisions with vehicles is poorly understood but likely significant. Recent estimates based on a study in Texas suggests that mortality during autumn migration may be of the order of 2 million per year or about 3% of the population. However, MaxEnt models used in that study are not well suited to quantifying mortality at hotspots where monarchs are concentrated by topography such as canyons when crossing highways. Potentially catastrophic mortality could occur at such sites if timing of migration and weather conditions conspire to force a large proportion of the migrating population across highways at low altitude. We investigated monarch mortality 15 October to 11 November, 2018 at two highway crossings in northeastern Mexico known for their frequent and extensive collisions (La Muralla and Santa Catarina). During a 15-19 day period of migration, we collected dead and injured monarchs along a series of 500 m roadside transects. We estimated a minimum total mortality during fall migration at just these sites of about 196,560 individuals. Monarchs exhibited a diurnal pattern of passage at Santa Catarina of peaks in late morning and late afternoon. Average vehicle speeds exceeded posted 60 km/h limits designed to protect monarchs, ranging from 75.1 to 99.6 km/h at La Muralla and 86.6 to 106.8 km/h at Santa Catarina. We recommend finer-scale documentation of migration pathways and an inventory of significant highway crossing hotspots for monarchs during fall migration in northeast Mexico. Mitigative measures could include better enforced vehicle speeds at least during the short period of migration, deflection structures to raise the height of crossing monarchs, and/or manipulation of habitat to lower the potential for monarchs descending to roost near key crossing points.
Monarch butterflies (Danaus plexippus) fuel their migration and overwinter energy needs through accumulated fat stores derived from plant nectars. Determining origins of these fuels is crucial to effective conservation programs. We used stable-hydrogen (δ 2 H) and carbon (δ 13 C) isotope measurements in stored lipids of monarchs raised under laboratory conditions as a proof of principle for the isotopic spatial sourcing of stored lipids. We then applied this approach to wild specimens collected from 2015 to 2018 to infer spatial information on nectaring by fall migrants through northeast Mexico and at the Mexican overwinter sites. Migrating monarchs derived from wide geographic natal origins but lipid δ 2 H values from migratory cohorts were not related to natal origin. Instead, migrants exploited isotopically similar nectar sources. Distributions of lipid δ 2 H values in overwintering monarchs were broader and more negative by ∼40 suggesting more transport of lipids from higher latitudes or additional nectaring while migrating at higher elevations though northeastern to central Mexico. Our work establishes a new isotopic technique for tracking origins of stored lipids in monarchs and other migratory animals and emphasizes the importance of nectar availability in the southern portion of the range, and especially the nectar corridor through central Mexico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.