The hydrosphere of Mars has remained mostly concealed within the subsurface for the past ∼3.5 Gyr. Localized rupturing of the permafrost‐capped crust led to voluminous groundwater discharges that carved some of the largest known channels in the solar system. However, our knowledge of the nature of the flows and their ultimate fate remains incomplete, partly because diagnostic landforms at outflow channel termini have been largely destroyed or buried. The Hebrus Valles outflow channels were excavated by fluid discharges that emanated from two point sources, and they mostly terminate in systems of fractures and depressions within the northern plains. Our investigation indicates that outflow channel floodwaters were captured and reabsorbed into the subsurface in zones where caverns developed within the northern plains. These findings imply that the study region comprises the only known location in the Martian northern lowlands where the fate of outflow channel discharges can be assessed with confidence. We propose that evacuation of subsurface materials via mud volcanism was an important process in cavern formation. Our conceptual model provides a hypothesis to account for the fate of sediments and fluids from some of the Martian outflow channels. It also reveals a mechanism for lowland cavern formation and upper crustal volatile enrichment after the development of the Martian global cryosphere.
This article describes the geomorphological and petrological characteristics of 19 submerged beachrocks located on the north Catalan coast (western Mediterranean Sea). Their length ranges between 8 and 1039 m, their width between 1.5 and 86.5 m and their thickness between 0.4 and 3.25 m. They are siliciclastic beachrocks consisting of well-rounded gravels with a very coarse sand matrix, and they have a low proportion of bioclasts (<1%). Cementation occurred in the swash zone and adjacent foreshore due to the precipitation of high magnesium calcite. From absolute dates (14C and optically stimulated luminescence) and anthropic artifacts, three phases of formation attributable to the Late Holocene were identified. Phase I corresponds to the warm and humid Roman Period and was recorded at a level below -3.75 m mean sea level (MSL). Phase II corresponds to the warm and arid Medieval Climate Anomaly and was recorded at +0.25 m to -2.5 m MSL. Phase III corresponds to the Little Ice Age and Industrial Period and was recorded at levels ranging from +0.5 m to -3.0 m MSL. Good temporal correspondence between the chronology of the cementation phases and warm and/or dry palaeoclimatic conditions can be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.