Abstract. We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using microprojectile bombardment to introduce the gene encoding nitrate reductase into a nitl mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit + phenotype were stable through mitosis and meiosis, even in the absence of selection, nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit + strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild-type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected.With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed.
Positive signaling by nitrate in its assimilation pathway has been studied in Chlamydomonas reinhardtii. Among >34,000 lines generated by plasmid insertion, 10 mutants were unable to activate nitrate reductase (NIA1) gene expression and had a Nit À (no growth in nitrate) phenotype. Each of these 10 lines was mutated in the nitrate assimilation-specific regulatory gene NIT2. The complete NIT2 cDNA sequence was obtained, and its deduced amino acid sequence revealed GAF, Gln-rich, Leu zipper, and RWP-RK domains typical of transcription factors and transcriptional coactivators associated with signaling pathways. The predicted Nit2 protein sequence is structurally related to the Nin (for nodule inception) proteins from plants but not to NirA/Nit4/ Yna proteins from fungi and yeast. NIT2 expression is negatively regulated by ammonium and is optimal in N-free medium with no need for the presence of nitrate. However, intracellular nitrate is required to allow Nit2 to activate the NIA1 promoter activity. Nit2 protein was expressed in Escherichia coli and shown to bind to specific sequences at the NIA1 gene promoter. Our data indicate that NIT2 is a central regulatory gene required for nitrate signaling on the Chlamydomonas NIA1 gene promoter and that intracellular nitrate is needed for NIT2 function and to modulate NIA1 transcript levels.
The nitrate reductase structural gene of Chlamydomonas reinhadt has been isolated from a genomic library by using a nitrate reductase cDNA probe from barley. Restriction fragment length polymorphism analyses mapped the Chlamydomonas clone (B6a) to the nitrate reductase structural gene locus nit-l. Overlapping inserts cover a region of the genome of about 24 kilobases containing the entire gene, which spans approximately 5-8 kilobases. Sequence analysis of DNA fragments from the B6a clone demonstrated a high degree of sequence similarity at the amino acid level with regions corresponding to portions of the heme and FAD/NADH-binig domains of tobacco and Arabidopsis thauliana nitrate reductases and human NADH cytochrome bs reductase. The identity ofthe cloned gene as nitrate reductase was confirmed by its ability to complement a nit-i mutation upon transformation. The nitrate reductase gene produced a 3.4-kilobase transcript in cells derepressed with nitrate; the transcript was undetectable in cells grown in the presence of ammonium. In cells that contain a mutation in the putative regulatory gene nit-2, sign tly lower levels of the 3.4-kilobase transcript were found, indicating that the wild-type nit-2 gene is involved in the control of nitrate reductase transcript levels.
Genetic evidence suggests that the NIT2 gene of Chlamydomonas reinhardtii encodes a positive regulator of the nitrate-assimilation pathway. To learn more about the function of the NIT2 gene product, we isolated the gene using a transposon-tagging strategy. A nit2 mutation caused by the insertion of a transposon was identified by testing spontaneous nit2 mutants for the presence of new copies of Gulliver or TOC1, transposable elements that have been identified in Chlamydomonas. In 2 of the 14 different mutants that were analyzed, a Gulliver element was found to be genetically and phenotypically associated with the nit2 mutation. Using the Gulliver element as a probe, one of the transposon-induced nit2 alleles was isolated, and a sequence adjoining the transposon was used to isolate the corresponding wild-type locus. The NIT2 gene was delimited by mapping DNA rearrangements associated with nit2 mutations and mutant rescue by genetic transformation. The NIT2 gene encodes a 6-kb transcript that was not detected in cells grown in the presence of ammonium. Likewise, NIT2-dependent genes are repressed in ammonium-grown cells. These results suggest that repression of the NIT2 gene may mediate metabolite repression of the nitrate assimilation pathway in Chlamydomonas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.