Testing for human papillomavirus (HPV) relies exclusively on techniques of molecular biology using nucleic acid probes. Tests for HPV using nucleic acid probes have been commercially available since the late 1980s, but early tests were cumbersome, involving the use of nucleic acid probes labeled with radioactive phosphorus (32P). These early HPV tests did not achieve widespread use because they did not detect all oncogenic HPV genotypes. The current commercial HPV detection kit, Digene's Hybrid Capture 2 kit, detects virtually all high-risk oncogenic HPV types, as well as most low-risk nononcogenic HPV genotypes. The Hybrid Capture 2 test format is a proprietary nucleic acid hybridization signal amplification system owned by Digene Corporation. Virtually all test formats for DNA sequence analysis are amenable to applications intended to detect and perhaps quantify the various HPV genotypes. These methods can involve direct hybridization with complementary DNA probes, such as Southern blotting or in situ hybridization, signal amplification, such as the Hybrid Capture 2 method or target nucleic acid amplification, most notably the polymerase chain reaction (PCR). Polymerase chain reaction has been used for HPV detection, genotyping, and viral load determination. General or consensus primer–mediated PCR assays have enabled screening for a broad spectrum of HPV types in clinical specimens using a single PCR reaction. Following amplification using consensus primers, individual HPV genotypes are identified using a variety of methods. Using consensus primers in a test format known as real-time quantitative PCR (RQ-PCR), it is possible to generate viral load (concentration) data from reaction curves generated by monitoring PCR reaction kinetics in real time.
The correlation of JAK2V617F with a proportion of chronic myeloproliferative disorders has generated numerous studies focused on the development of molecular-based assays for JAK2V617F detection. The current parallel study comparatively evaluated 3 JAK2V617F molecular detection methods. Genomic DNA from blood or bone marrow was assayed by 3 laboratories using allele-specific polymerase chain reaction (AS-PCR) or kit-based restriction fragment length polymorphism methods, which used polyacrylamide gel or capillary electrophoresis analysis. In addition, samples were sequenced in 2 of the laboratories. Results found 100% concordance among the 3 methods, with analytic sensitivities of 5% for both kit methods and 0.01% for AS-PCR. The kitbased assays detect JAK2V617F with equal sensitivity regardless of analysis method, and, despite greater sensitivity of AS-PCR, all 3 methods yielded 100% concordant results for this 36-sample set. Consistent with other reports, direct sequencing was insufficiently sensitive to serve as an initial diagnostic tool for JAK2V617F detection.
The HC II CT/GC Test can be performed using specimens collected in GenProbe transport media and has a significantly greater sensitivity for C. trachomatis detection than the PACE 2 System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.