Identifying and purchasing new small molecules to test in biological assays are enabling for ligand discovery, but as purchasable chemical space continues to grow into the tens of billions based on inexpensive make-on-demand compounds, simply searching this space becomes a major challenge. We have therefore developed ZINC20, a new version of ZINC with two major new features: billions of new molecules and new methods to search them. As a fully enumerated database, ZINC can be searched precisely using explicit atomic-level graph-based methods, such as SmallWorld for similarity and Arthor for pattern and substructure search, as well as 3D methods such as docking. Analysis of the new make-on-demand compound sets by these and related tools reveals startling features. For instance, over 97% of the core Bemis–Murcko scaffolds in make-on-demand libraries are unavailable from “in-stock” collections. Correspondingly, the number of new Bemis–Murcko scaffolds is rising almost as a linear fraction of the elaborated molecules. Thus, an 88-fold increase in the number of molecules in the make-on-demand versus the in-stock sets is built upon a 16-fold increase in the number of Bemis–Murcko scaffolds. The make-on-demand library is also more structurally diverse than physical libraries, with a massive increase in disc- and sphere-like shaped molecules. The new system is freely available at .
Multiple recent studies have focused on unraveling the content of the medicinal chemist's toolbox. Here, we present an investigation of chemical reactions and molecules retrieved from U.S. patents over the past 40 years (1976-2015). We used a sophisticated text-mining pipeline to extract 1.15 million unique whole reaction schemes, including reaction roles and yields, from pharmaceutical patents. The reactions were assigned to well-known reaction types such as Wittig olefination or Buchwald-Hartwig amination using an expert system. Analyzing the evolution of reaction types over time, we observe the previously reported bias toward reaction classes like amide bond formations or Suzuki couplings. Our study also shows a steady increase in the number of different reaction types used in pharmaceutical patents but a trend toward lower median yield for some of the reaction classes. Finally, we found that today's typical product molecule is larger, more hydrophobic, and more rigid than 40 years ago.
Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.