Since the molecular revolution of the 1980s, knowledge of the aetiology of cancer has increased considerably, which has led to the discovery and development of targeted therapies tailored to inhibit cancer-specific pathways. The introduction and refinement of rapid, high-throughput screening technologies over the past decade has greatly facilitated this targeted discovery and development process. Here, we describe the discovery and continuing development of sorafenib (previously known as BAY 43-9006), the first oral multikinase inhibitor that targets Raf and affects tumour signalling and the tumour vasculature. The discovery cycle of sorafenib (Nexavar; Bayer Pharmaceuticals) - from initial screening for a lead compound to FDA approval for the treatment of advanced renal cell carcinoma in December 2005 - was completed in just 11 years, with approval being received approximately 5 years after the initiation of the first Phase I trial.
(Acyloxy)methyl ketones, of general structure Z-[AA2]-[AA1]-CH2OCOAr, are potent inactivators of the cysteine proteinase cathepsin B. These reagents have been designed as affinity labels in which the dipeptidyl moiety serves as an affinity group (complementary to the S1 and S2 sites of the enzyme), while the (acyloxy)methyl ketone unit (-COCH2OCOR), containing a weak leaving group in the form of a carboxylate nucleofuge, functions as the potentially reactive entity that labels the enzyme. The inhibition is time dependent, active site directed, and irreversible. The apparent second-order rate constant kinact/Kinact, which characterizes the inhibition of cathepsin B by this series, spans several orders of magnitude and in certain cases exceeds 10(6) M-1 s-1. The activity of this series of inhibitors was found to be exquisitely sensitive to the nature of the carboxylate leaving group as well as the affinity group. A strong dependence of second-order inactivation rate on leaving group pKa was uncovered for Z-Phe-Ala (acyloxy)methyl ketones [log(k/K) = 1.1 (+/- 0.1) X pKa + 7.2 (+/- 0.4); r2 = 0.82, n = 26]. Heretofore in constructing affinity labels the choice of leaving group was quite restricted. The aryl carboxylate group thus offers considerable variation as a design element in that both its binding affinity and reactivity can be controlled by substituent effects. Specific peptidyl (acyloxy)methyl ketones thus represent prime examples of highly potent, chemically stable enzyme inhibitors with variable structural elements in both the affinity and departing groups.
Raf kinase, an enzyme which acts downstream in the Ras signaling pathway, is involved in cancerous cell proliferation. Thus, small molecule inhibitors of Raf kinase activity may be important agents for the treatment of cancer. A novel class of Raf-1 inhibitors was discovered, using a combination of medicinal and combinatorial chemistry approaches. This effort culminated in the identification of the clinical candidate BAY 43-9006, currently undergoing Phase I clinical trials. The present review summarizes the medicinal chemistry development of ureas as highly potent inhibitors of Raf-1 kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.