High plasma vascular endothelial growth factor (VEGF) concentrations are associated with radiation resistance and poor prognosis. After an exposure to ionizing radiation in cell culture an early phase and a late phase of increased VEGF have been documented. The activation was dependent on the radiation dose. Therefore, the purpose of this study was to measure baseline plasma VEGF and changes in VEGF over the course of fractionated radiation therapy in dogs with spontaneous tumors. Dogs with tumors had a significantly higher pretreatment plasma VEGF than did dogs without tumors. Immediately after irradiation no increased plasma VEGF was observed. Over the course of radiation therapy there was an increased plasma VEGF in dogs treated with low doses per fraction/high total dose, whereas plasma VEGF remained stable in dogs irradiated with high doses per fraction/low total dose. The regulatory mechanisms are very complex, and therefore the value of plasma VEGF measurements as an indirect marker of angiogenesis induced by radiotherapy is limited.
Higher values of the ultrasonographic parameters representing vascularity and perfusion of tumors in dogs were determined via PD ultrasonography after administration of contrast medium than via PD or CD ultrasonography without administration of contrast medium.
We used positron emission tomography (PET) with [18F]fluoromisonidazole ([18F]FMISO) to study tumor hypoxia in six dogs with spontaneous sarcomas. The tumors were regarded as hypoxic if [18F]FMISO uptake exceeded normal tissue radioactivity by 40% (tumor/muscle ratio > 1.4) or if kinetic analysis indicated a positive [18F]FMISO tissue influx rate (Ki > 0) by a Patlak plot. Using these criteria, we found hypoxia in a fibrosarcoma grade II, an undifferentiated sarcoma, and an ostoeosarcoma, but not in a fibrosarcoma grade I, another osteosarcoma, and a myxosarcoma. In three animals, the tumor oxygen partial pressure (pO2) was also measured invasively using Eppendorf needle electrodes. In these cases, the Eppendorf measurements were confirmed by the [18F]FMISO PET results. In addition, [15O]H2O PET was performed in four dogs in order to assess tumor perfusion. Comparisons of the [18F]FMISO with [15O]H2O PET images in two cases showed that tumor hypoxia occurred in the tumor center with low perfusion, whereas perfusion was heterogeneous in a nonhypoxic tumor.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.