The capacity to concentrate urine develops progressively during postnatal life in most mammalian species. Here we have examined whether low expression of the arginine vasopressin (AVP)-activated water channel aquaporin-2 (AQP-2) may be a limiting factor for the concentrating capacity in the infant rats. Urine osmolality in response to 24-h dehydration increased significantly from 10 to 40 days of age. The most rapid increase occurred during the weaning period, i.e., days 15-20. A similar developmental pattern was observed for AQP-2 mRNA levels in the renal medulla. AQP-2 protein levels also increased markedly from day 10 to 40. Immunohistochemistry revealed that AQP-2 was exclusively located in collecting duct principal cells both in infant and adult rats but that the signal was much weaker in infants. To further examine the relationship between urinary concentrating capacity and AQP-2 expression, we treated rats with a single injection of betamethasone, which is known to accelerate maturation in several organs. Twenty-four hours after treatment, there was an increase in urine osmolality, renal medullary AQP-2 mRNA, and AQP-2 protein levels in infant but not in adult rats. A single injection of a specific V2 agonist caused within 6 h significant increase of AQP-2 mRNA in both infant and adult. The expression of the mRNA of three other transporters involved in the concentrating process, medullary Na(+)-K(+)-ATPase alpha-subunit, Na-K-2Cl cotransporter, and epithelial chloride channel also increased during the weaning period and were upregulated by glucocorticoids. We conclude that there is a well-synchronized development of the many of the components that determine the concentrating capacity and that the low expression of AQP-2 is one of the limiting factors for low concentrating capacity in infants.
At birth, rapid removal of lung liquid from potential airspaces is required to establish pulmonary gas exchange. To investigate the role for water channels, aquaporins (AQP) and ion transporters in this process, the mRNA expression of AQP, Na+,K+‐ATPase and the amiloride‐sensitive Na+ channel (ENaC) were studied in the fetal and postnatal rat lung. The mRNA expression of all transporters studied increased postnatally. The following water channels were expressed in the lung, AQP1, 4 and 5. The most specific perinatal induction pattern was observed for AQP4. A sharp and transient increase of AQP4 mRNA occurred just after birth coinciding with the time course for clearance of lung liquid. This transient induction of AQP4 mRNA at birth was lung‐tissue specific. Around birth there was a moderate increase in AQP1 mRNA, which was not transient. AQP5 increased continuously until adulthood. Fetal lung AQP4 mRNA was induced by both β‐adrenergic agonists and glucocorticoid hormone, which are factors that have been suggested to accelerate the clearance of lung liquid. Immunocytochemistry revealed that AQP4 was located in the basolateral membranes of bronchial epithelia in newborn rats, consistent with the view that this is the major site for perinatal lung liquid absorption. The Na+, K+‐ATPase α1 subunit and ENaC α‐subunit mRNA also increased around birth, suggesting that they co‐operatively facilitate lung liquid clearance at birth. These data indicate that removal of lung liquid at birth is associated with pronounced and well‐synchronized changes in the expression of AQP and the ion transporters studied. The transient perinatal induction of AQP4, which could be prenatally induced by β‐adrenergic agonists, and the localization of this water channel strongly suggest that it plays a critical role for removal of lung liquid at the time of birth.
The molecular mechanisms underlying the regulation of sodium excretion are incompletely known. Here we propose a general model for a bi-directional control of tubular sodium transporters by natriuretic and antinatriuretic factors. The model is based on experimental data from studies on the regulation of the activity of Na+,K+-ATPase, the enzyme that provides the electrochemical gradient necessary for tubular reabsorption of electrolytes and solutes in all tubular segments. Regulation is carried out to a large extent by autocrine and paracrine factors. Of particular interest are the two catecholamines, dopamine and norepinephrine. Dopamine is produced in proximal tubular cells and inhibits Na+,K+-ATPase activity in several tubule segments. Renal dopamine availability is regulated by the degrading enzyme, catechol-O-methyl transferase. Renal sympathetic nerve endings contain norepinephrine and neuropeptide Y (NPY). Activation of alpha-adrenergic receptors increase and activation of beta-adrenergic receptors decrease Na+,K+-ATPase activity. alpha-Adrenergic stimulation increases the Na+ affinity of the enzyme and thereby the driving force for transcellular Na+ transport. NPY acts as a master hormone by synergizing the alpha- and antagonizing the beta-adrenergic effects. Dopamine and norepinephrine control Na+,K+-ATPase activity by exerting opposing forces on a common intracellular signaling system of second messengers, protein kinases and protein phosphatases, ultimately determining the phosphorylation state of Na+,K+-ATPase and thereby its activity. Important crossroads in this network are localized and functionally defined. Phosphorylation sites for protein kinase A and C have been identified and their functional significance has been verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.