Understanding cochlear anatomy is crucial for developing less traumatic electrode arrays and insertion guidance for cochlear implantation. The human cochlea shows considerable variability in size and morphology. This study analyses 1000+ clinical temporal bone CT images using a web-based image analysis tool. Cochlear size and shape parameters were obtained to determine population statistics and perform regression and correlation analysis. The analysis revealed that cochlear morphology follows Gaussian distribution, while cochlear dimensions A and B are not well-correlated to each other. Additionally, dimension B is more correlated to duct lengths, the wrapping factor and volume than dimension A. The scala tympani size varies considerably among the population, with the size generally decreasing along insertion depth with dimensional jumps through the trajectory. The mean scala tympani radius was 0.32 mm near the 720° insertion angle. Inter-individual variability was four times that of intra-individual variation. On average, the dimensions of both ears are similar. However, statistically significant differences in clinical dimensions were observed between ears of the same patient, suggesting that size and shape are not the same. Harnessing deep learning-based, automated image analysis tools, our results yielded important insights into cochlear morphology and implant development, helping to reduce insertion trauma and preserving residual hearing.
HypothesisMicro-computed tomography (micro-CT) and cone-beam computed tomography (CBCT), in conjunction with the image fusion technique, may provide similar results for trauma assessment after cochlear implantation, with respect to the trauma evaluation in preclinical cochlear implant (CI) studies, as the histology.BackgroundBefore clinical use, novel cochlear implant (CI) designs are tested in temporal bone (TB) studies for usability and risk evaluation. The criterion standard for evaluating intracochlear insertion trauma and electrode location has historically been with histological samples. Progress of modern imaging technology has created alternatives to classic histology. This study compares the micro-CT and CBCT fusion images between histological samples in a preclinical CI study.MethodsFourteen freshly frozen TBs were inserted with a lateral wall research CI electrode. All TBs were scanned with CBCT preoperatively and postoperatively. After insertion, the TBs were prepared for micro-CT and histology. Twelve TBs underwent first a micro-CT and then the histological process. The CBCTs were used for image fusion, and all three different methods were used for intracochlear trauma evaluation. The results were compared between methods.ResultsThere were 4 of 14 translocations detected with the fusion image method and 3 of 12 with the micro-CT and histology. When compared, the trauma grades converged and were not statistically significant.ConclusionThe trauma grading based on micro-CT is comparable to the histology. The image fusion technique based on CBCT is less accurate because it relies on an empirical assumption of the basal membrane localization, but it is clinically applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.