Sensor networks (SN) are increasingly used for the observation and monitoring of spatiotemporal phenomena and their dynamics such as pollution, noise and forest fires. In multisensory systems, a sensor node may be equipped with different sensing units to observe and detect several spatiotemporal phenomena at the same time. Simultaneous detection of different phenomena can be used to infer their spatial interactions over space and time. For this purpose, decentralized spatial computing approaches have shown their potential for effective reasoning on spatial phenomena within a sensor network. However, in most cases, spatial extents of continuous dynamic phenomena are uncertain, and their relations and interactions cannot be inferred by the existing approaches at the sensor node level. To address this limitation, in this paper, we propose and develop a decentralized fuzzy rule-based spatial reasoning approach to depict the spatial relations that hold between two evolving spatial phenomena with fuzzy boundaries. The proposed method benefits from a more adapted fuzzy-crisp representation of dynamic phenomena observed by SN where each vague phenomenon is composed of five distinguished zones including the kernel, conjecture and exterior zone and their boundaries. For each detected phenomenon, a sensor node will report one of these zones based on its location. Aggregation of the information reported from the sensor nodes allows reasoning on spatial relations between the observed phenomena and their evolution. Such spatial information provides users with more valuable near real-time information on the state of different phenomena that can be used for informed decision-making.
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of sensor data and their update with respect to the evolution of the state of the phenomena to be represented. Sensor data are generally poorly provided in terms of semantic information. Hence, the proposed approach starts with building a knowledge base integrating sensor and domain ontologies and then uses fuzzy rules to extract three-valued spatial qualitative information expressing the relative position of each sensor with respect to the monitored phenomenon’s extent. The observed phenomena are modeled using a fuzzy-crisp type spatial object made of a kernel and a conjecture part, which is a more realistic spatial representation for such vague shape environmental phenomena. The second step of our approach uses decentralized computing techniques to infer boundary detection and vertices for the kernel and conjecture parts of spatial objects using fuzzy IF-THEN rules. Finally, we present a case study for urban noise pollution monitoring by a sensor network, which is implemented in Netlogo to illustrate the validity of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.