We present a comprehensive summary of our observations of metal-rich particles in multicrystalline silicon (mc-Si) solar cell materials from multiple vendors, including directionally-solidified ingot-grown, sheet, and ribbon, as well as multicrystalline float zone materials contaminated during growth. In each material, the elemental nature, chemical states, and distributions of metal-rich particles are assessed by synchrotron-based analytical x-ray microprobe techniques. Certain universal physical principles appear to govern the behavior of metals in nearly all materials: (a) Two types of metal-rich particles can be observed (metal silicide nanoprecipitates and metal-rich inclusions up to tens of microns in size, frequently oxidized), (b) spatial distributions of individual elements strongly depend on their solubility and diffusivity, and (c) strong interactions exist between metals and certain types of structural defects. Differences in the distribution and elemental nature of metal contamination between different mc-Si materials can largely be explained by variations in crystal
A novel crystal growth method has been developed for the production of ingots, bricks and wafers for solar cells. Monocrystallinity is achievable over large volumes with minimal dislocation incorporation. The resulting defect types, densities and interactions are described both microscopically for wafers and macroscopically for the ingot, looking closely at the impact of the defects on minority carrier lifetime. Solar cells of 156 cm2 size have been produced ranging up to 17% in efficiency using industrial screen print processes.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.