The water level in the Three Gorges Dam reservoir is expected to change between the elevations of 145 m and 175 m, as a function of the flood control implementation and the intensity of the annual flood. As a matter of fact, the hydraulical and mechanical loadings, related to the water level modifications, will result in alterations in the slope stability conditions. The town of Badong (Hubei), of 20 000 inhabitants, is one of the towns which was submerged by the impoundment of the reservoir. As a consequence, the new town of Badong was constructed on a nearby site which appeared to be partly an unstable site. A part of this site corresponds to an old landslide, the Huangtupo landslide, the base of which had to be submerged by the water of the reservoir. The analysis of the Huangtupo landslide, taking into account various events scenarios, drainage and reinforcement measures and monitoring devices, allows to illustrate the general process implemented all along the reservoir in order to mitigate the landslide hazard.
International audienceThis study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivity of a compacted expansive clay, with emphasis put on the effect of lime hydration and modification. For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treated and untreated soil specimens over 7 d after full saturation of the specimens and their microstructures were observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklime prior to compaction in order to study the effect of lime hydration. It is observed that lime hydration and modification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. This increase gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity of lime-treated specimen increased progressively during the first 3 d of modification phase and stabilised during the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructure observation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation, a decreasing hydraulic conductivity can be expected in longer time due to the formation of cementitious compounds
The Flims rockslide is the largest landslide in the Alps, with an estimated volume of 12 km3. It resulted from a prehistoric high-speed movement of a large limestone mass. Several main factors influenced the mobility of the Flims rockslide: (i) the steep slopes of the Rhine River valley that blocked the spreading of the rock debris out of the limits of Rabiusa and Carreratobel tributary valleys; (ii) the resisting forces taking place at the base of the rockslide by friction and substratum obstacles; and (iii) the rock mass evolving to a granular state, as observed in the deposits, in which coherence of the original rock massif has been preserved. We expect that most of the energy was consumed by impacting on the opposite slope, forcing the rock mass to stop. Lateral parts and some portions of debris, which entered valleys of the right tributaries of the Rhine River, created tongues by rock avalanche motion, indicating transport velocity. These rock masses eroded the valley fill to create a large mixed mass at the toe of the rockslide deposits. Thus, the Flims rock slope movement can be classified as a rockslide to its middle section and as rock avalanches at its lateral margins. A slab-on-slab model is proposed to characterize transformation of the rock mass during transport, with different stages of motion. Beginning as a rockslide, a delaminating process took place to produce a multislab shearing motion. Shearing and fracturing create dilatancy of the sliding rock debris, with spreading constrained by topographic effects. Dynamic disintegration processes explain the production of fine particles and are at the origin of the granular state of the deposits. Lateral sections of the debris mass continued to flow in the absence of topographic constraints.Key words: rockslide, rock avalanche, Flims, disintegration, topographic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.