A reagentless bioactive paper-based solid-phase biosensor was developed for detection of acetylcholinesterase (AChE) inhibitors, including organophosphate pesticides. The assay strip is composed of a paper support (1 x 10 cm), onto which AChE and a chromogenic substrate, indophenyl acetate (IPA), were entrapped using biocompatible sol-gel derived silica inks in two different zones (e.g., sensing and substrate zones). The assay protocol involves first introducing the sample to the sensing zone via lateral flow of a pesticide-containing solution. Following an incubation period, the opposite end of the paper support is placed into distilled deionized water (ddH(2)O) to allow lateral flow in the opposite direction to move paper-bound IPA to the sensing area to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow-to-blue color change. The modified sensor is able to detect pesticides without the use of any external reagents with excellent detection limits (bendiocarb approximately 1 nM; carbaryl approximately 10 nM; paraoxon approximately 1 nM; malathion approximately 10 nM) and rapid response times (approximately 5 min). The sensor strip showed negligible matrix effects in detection of pesticides in spiked milk and apple juice samples. Bioactive paper-based assays on pesticide residues collected from food samples showed good agreement with a conventional mass spectrometric assay method. The bioactive paper assay should, therefore, be suitable for rapid screening of trace levels of organophosphate and carbamate pesticides in environmental and food samples.
There is an increasing interest in new strategies to rapidly detect analytes of clinical and environmental interest without the need for sophisticated instrumentation. As an example, the detection of acetylcholinesterase (AChE) inhibitors such as neurotoxins and organophosphates has implications for neuroscience, drug assessment, pharmaceutical development, and environmental monitoring. Functionalization of surfaces with multiple reagents, including enzymes and chromogenic reagents, is a critical component for the effective development of "dipstick" or lateral flow biosensors. Herein, we describe a novel paper-based solid-phase biosensor that utilizes piezoelectric inkjet printing of biocompatible, enzyme-doped, sol-gel-based inks to create colorimetric sensor strips. For this purpose, polyvinylamine (PVAm, which captures anionic agents) was first printed and then AChE was overprinted by sandwiching the enzyme within two layers of biocompatible sol-gel-derived silica on paper. AChE inhibitors, including paraoxon and aflatoxin B1, were detected successfully using this sensor by measuring the residual activity of AChE on paper, using Ellman's colorimetric assay, with capture of the 5-thio-2-nitrobenzoate (TNB(-)) product on the PVAm layer. The assay provided good detection limits (paraoxon, approximately 100 nM; aflatoxin B1, approximately 30 nM) and rapid response times (<5 min). Detection could be achieved either by eye or using a digital camera and image analysis software, avoiding the need for expensive and sophisticated instrumentation. We demonstrate that the bioactive paper strip can be used either as a dipstick or a lateral flow-based biosensor. The use of sol-gel-based entrapment produced a sensor that retained enzyme activity and gave reproducible results after storage at 4 degrees C for at least 60 days, making the system suitable for storage and use in the field.
A bioactive paper-based colorimetric "dipstick" bioassay is reported that is based on acetylcholinesterase (AChE) catalyzed enlargement of gold nanoparticles that are co-entrapped with the enzyme in a sol-gel based silica material that is coated on a functionalized paper substrate. Test solutions containing acetylthiocholine (ATCh) and a Au(III) salt are spotted over the sensing area of the bioactive test strips containing small (3 nm diameter) primary gold nanoparticles (AuNP). Biocatalyzed hydrolysis of ATCh via AChE leads to formation of thiocholine, which in turn reduces the Au(III) onto the entrapped nanoparticles, producing particle growth and a concomitant increase in color intensity that can be correlated to the amount of substrate or inhibitor present in test solutions. The entrapped AuNP cannot leach from the silica material, leading to a bioactive paper assay that can utilize visual detection of a color change as a simple readout. Our results show that the dipstick based bioassay is sufficiently sensitive to allow for detection of Paraoxon over the concentration range of 500 nM to approximately 1 mM. Detection can be made by eye or using a digital camera and image analysis, making the assay suitable for remote analysis.
Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.