The kidney is faced with unique challenges for oxygen regulation, both because its function requires that perfusion greatly exceeds that required to meet metabolic demand and because vascular control in the kidney is dominated by mechanisms that regulate glomerular filtration and tubular reabsorption. Because tubular sodium reabsorption accounts for most oxygen consumption (Vo2) in the kidney, renal Vo2 varies with glomerular filtration rate. This provides an intrinsic mechanism to match changes in oxygen delivery due to changes in renal blood flow (RBF) with changes in oxygen demand. Renal Vo2 is low relative to supply of oxygen, but diffusional arterial-to-venous (AV) oxygen shunting provides a mechanism by which oxygen superfluous to metabolic demand can bypass the renal microcirculation. This mechanism prevents development of tissue hyperoxia and subsequent tissue oxidation that would otherwise result from the mismatch between renal Vo2 and RBF. Recent evidence suggests that RBF-dependent changes in AV oxygen shunting may also help maintain stable tissue oxygen tension when RBF changes within the physiological range. However, AV oxygen shunting also renders the kidney susceptible to hypoxia. Given that tissue hypoxia is a hallmark of both acute renal injury and chronic renal disease, understanding the causes of tissue hypoxia is of great clinical importance. The simplistic paradigm of oxygenation depending only on the balance between local perfusion and Vo2 is inadequate to achieve this goal. To fully understand the control of renal oxygenation, we must consider a triad of factors that regulate intrarenal oxygenation: local perfusion, local Vo2, and AV oxygen shunting.
SUMMARY1. Renal blood flow, local tissue perfusion and blood oxygen content are the major determinants of oxygen delivery to kidney tissue. Arterial pressure and segmental vascular resistance influence kidney oxygen consumption through effects on glomerular filtration rate and sodium reabsorption.2. Diffusive shunting of oxygen from arteries to veins in the cortex and from descending to ascending vasa recta in the medulla limits oxygen delivery to renal tissue. Oxygen shunting depends on the vascular network, renal haemodynamics and kidney oxygen consumption. Consequently, the impact of changes in renal haemodynamics on tissue oxygenation cannot necessarily be predicted intuitively and, instead, requires the integrative approach offered by computational modelling and multiple measuring modalities.3. Tissue hypoxia is a hallmark of acute kidney injury (AKI) arising from multiple initiating insults, including ischaemia-reperfusion injury, radiocontrast administration, cardiopulmonary bypass surgery, shock and sepsis. Its pathophysiology is defined by inflammation and/or ischaemia resulting in alterations in renal tissue oxygenation, nitric oxide bioavailability and oxygen radical homeostasis. This sequence of events appears to cause renal microcirculatory dysfunction, which may then be exacerbated by the inappropriate use of therapies common in peri-operative medicine, such as fluid resuscitation.4. The development of new ways to prevent and treat AKI requires an integrative approach that considers not just the molecular mechanisms underlying failure of filtration and tissue damage, but also the contribution of haemodynamic factors that determine kidney oxygenation. The development of bedside monitors allowing continuous surveillance of renal haemodynamics, oxygenation and function should facilitate better prevention, detection and treatment of AKI.
Norepinephrine is the principal vasopressor used to restore blood pressure in sepsis, but its effects on intrarenal oxygenation are unknown. To clarify this, we examined renal cortical, medullary, and urinary oxygenation in ovine septic acute kidney injury and the response to resuscitation with norepinephrine. A renal artery flow probe and fiberoptic probes were placed in the cortex and medulla of sheep to measure tissue perfusion and oxygenation. A probe in the bladder catheter measured urinary oxygenation. Sepsis was induced in conscious sheep by infusion of Escherichia coli for 32 hours. At 24 to 30 hours of sepsis, either norepinephrine, to restore mean arterial pressure to preseptic levels or vehicle-saline was infused (8 sheep per group). Septic acute kidney injury was characterized by a reduction in blood pressure of ∼12 mm Hg, renal hyperperfusion, and oliguria. Sepsis reduced medullary perfusion (from an average of 1289 to 628 blood perfusion units), medullary oxygenation (from 32 to 16 mm Hg), and urinary oxygenation (from 36 to 24 mm Hg). Restoring blood pressure with norepinephrine further reduced medullary perfusion to an average of 331 blood perfusion units, medullary oxygenation to 8 mm Hg and urinary oxygenation to 18 mm Hg. Cortical perfusion and oxygenation were preserved. Thus, renal medullary hypoxia caused by intrarenal blood flow redistribution may contribute to the development of septic acute kidney injury, and resuscitation of blood pressure with norepinephrine exacerbates medullary hypoxia. The parallel changes in medullary and urinary oxygenation suggest that urinary oxygenation may be a useful real-time biomarker for risk of acute kidney injury.
Renal perfusion provides the driving pressure for glomerular filtration and delivers the oxygen and nutrients to fuel solute reabsorption. Renal ischaemia is a major mechanism in acute kidney injury and may promote the progression of chronic kidney disease. Thus, quantifying renal tissue perfusion is critically important for both clinicians and physiologists. Current reference techniques for assessing renal tissue perfusion have significant limitations. Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that uses magnetic labelling of water in arterial blood as an endogenous tracer to generate maps of absolute regional perfusion without requiring exogenous contrast. The technique holds enormous potential for clinical use but remains restricted to research settings. This statement paper from the PARENCHIMA network briefly outlines the ASL technique and reviews renal perfusion data in 53 studies published in English through January 2018. Renal perfusion by ASL has been validated against reference methods and has good reproducibility. Renal perfusion by ASL reduces with age and excretory function. Technical advancements mean that a renal ASL study can acquire a whole kidney perfusion measurement in less than 5–10 min. The short acquisition time permits combination with other MRI techniques that might inform drug mechanisms and renal physiology. The flexibility of renal ASL has yielded several variants of the technique, but there are limited data comparing these approaches. We make recommendations for acquiring and reporting renal ASL data and outline the knowledge gaps that future research should address.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.