Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.
Phosphatidylinositol-3-kinase p110δ serves as a central integration point for signaling from cell surface receptors known to promote malignant B-cell proliferation and survival. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ as a treatment approach for patients with B-cell malignancies. We thus identified 5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-quinazolin-4-one (CAL-101), a highly selective and potent p110δ small molecule inhibitor (half-maximal effective concentration [EC(50)] = 8nM). Using tumor cell lines and primary patient samples representing multiple B-cell malignancies, we have demonstrated that constitutive phosphatidylinositol-3-kinase pathway activation is p110δ-dependent. CAL-101 blocked constitutive phosphatidylinositol-3-kinase signaling, resulting in decreased phosphorylation of Akt and other downstream effectors, an increase in poly(ADP-ribose) polymerase and caspase cleavage and an induction of apoptosis. These effects have been observed across a broad range of immature and mature B-cell malignancies, thereby providing a rationale for the ongoing clinical evaluation of CAL-101.
Key Points Idelalisib was evaluated in 54 patients with heavily pretreated chronic lymphocytic leukemia, and target inhibition was documented in vivo. Oral idelalisib therapy demonstrated a favorable safety profile and rapidly induced durable disease control in the majority of patients.
Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-]pyrazin-1-yl]--(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK. Relative to the other BTK inhibitors described here, the reduced intrinsic reactivity of acalabrutinib helps to limit inhibition of off-target kinases having cysteine-mediated covalent binding potential. Acalabrutinib demonstrated higher biochemical and cellular selectivity than ibrutinib and spebrutinib (compounds 2 and 3, respectively). Importantly, off-target kinases, such as epidermal growth factor receptor (EGFR) and interleukin 2-inducible T cell kinase (ITK), were not inhibited. Determination of the inhibitory potential of anti-immunoglobulin M-induced CD69 expression in human peripheral blood mononuclear cells and whole blood demonstrated that acalabrutinib is a potent functional BTK inhibitor. In vivo evaluation in mice revealed that acalabrutinib is more potent than ibrutinib and spebrutinib. Preclinical and clinical studies showed that the level and duration of BTK occupancy correlates with in vivo efficacy. Evaluation of the pharmacokinetic properties of acalabrutinib in healthy adult volunteers demonstrated rapid absorption and fast elimination. In these healthy individuals, a single oral dose of 100 mg showed approximately 99% median target coverage at 3 and 12 hours and around 90% at 24 hours in peripheral B cells. In conclusion, acalabrutinib is a BTK inhibitor with key pharmacologic differentiators versus ibrutinib and spebrutinib and is currently being evaluated in clinical trials.
Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.