Nucleopolyhedroviruses (NPV: Gammabaculovirus: Baculoviridae) of diprionid sawflies (Diprionidae: Hymenoptera) are highly host specific and only infect the midgut epithelium. While still alive, infected sawfly larvae excrete NPV-laden diarrhea that contaminates food sources. The diarrhea can then be consumed by conspecific larvae, resulting in rapid horizontal transmission of the virus. To better understand the efficacy of Gammabaculovirus-based biological control products, the horizontal spread of such a virus (NeabNPV) within cohorts of balsam fir sawfly (Neodiprion abietis) larvae was studied by introducing NeabNPV-treated larvae into single-cohort groups at densities similar to those observed during the increasing (field study) and peak (laboratory study) phases of an outbreak. In field studies (~200 N. abietis larvae/m2 of balsam fir (Abies balsamea) foliage), NeabNPV-induced mortality increased positively in a density-dependent manner, from 23% (in control groups) to 51% with the addition of one first-instar NeabNPV-treated larva, to 84% with 10 first–instar-treated larvae. Mortality was 60% and 63% when one or 10 NeabNPV-treated third-instar larva(e), respectively, were introduced into groups. Slightly higher levels of NeabNPV-induced mortality occurring when NeabNPV-treated larvae were introduced into first- rather than third-instar cohorts suggests that early instars are more susceptible to the virus. In the laboratory (~1330 N. abietis larvae/ m2 of foliage), NeabNPV-caused mortality increased from 20% in control groups to over 80% with the introduction of one, five or 10 NeabNPV-treated larvae into treatment groups of first-instar larvae.
Field trials and assessments of the balsam fir sawfly (Neodiprion abietis) nucleopolyhedrovirus (NeabNPV: Baculoviridae, Gammabaculovirus) against its natural host were conducted in July and August 2002 near Corner Brook, Newfoundland and Labrador, Canada, in naturally regenerated, precommercially thinned stands dominated by balsam fir (Abies balsamea). Two experimental blocks, each with its own untreated control, were established. The purpose of the Island Pond block was to examine the spread of NeabNPV from a 313-ha aerial treatment block out into adjacent populations of balsam fir sawflies. The purpose of the Old Man’s Pond block (2,093 ha) was to determine whether NeabNPV could disperse into populations of balsam fir sawflies within a 200-m zone between spray swaths. NeabNPV was applied to treatment blocks by a Cessna 188B AgTruck aircraft equipped with MicronAir AU4000 rotary atomizers at an application rate equivalent to 1 × 109 NeabNPV occlusion bodies/ha in 2.5 L of 20% aqueous molasses. At Island Pond, NeabNPV infection increased with time following the spray, especially for individuals close to the treatment block, and infection rate decreased to a measured distance of 400 m from the treatment block. At Old Man’s Pond, NeabNPV infection rose higher (80% vs. 15%) and sawfly densities declined more (84% vs. 60%) in the area between spray swaths than in the control block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.