We hypothesized that ultrafiltrate crossing the luminal endothelial glycocalyx through infrequent discontinuities (gaps) in the tight junction (TJ) strand of endothelial clefts reduces albumin diffusive flux from tissue into the 'protected region' of the cleft on the luminal side of the TJ. Thus, the effective oncotic pressure difference (σ∆π) opposing filtration is greater than that measured between lumen and interstitial fluid. To test this we measured σ∆π across rat mesenteric microvessels perfused with albumin (50 mg ml −1 ) with and without interstitial albumin at the same concentration within a few micrometres of the endothelium as demonstrated by confocal microscopy. We found σ∆π was near 70% of luminal oncotic pressure when the tissue concentration equalled that in the lumen. We determined size and frequency of TJ strand gaps in endothelial clefts using serial section electron microscopy. We found nine gaps in the reconstructed clefts having mean spacing of 3.59 µm and mean length of 315 nm. The mean depth of the TJ strand near gaps was 67 nm and the mean cleft path length from lumen to interstitium was 411 nm. With these parameters our three-dimensional hydrodynamic model confirmed that fluid velocity was high at gaps in the TJ strand so that even at relatively low hydraulic pressures the albumin concentration on the tissue side of the glycocalyx was significantly lower than in the interstitium. The results conform to the hypothesis that colloid osmotic forces opposing filtration across non-fenestrated continuous capillaries are developed across the endothelial glycocalyx and that the oncotic pressure of interstitial fluid does not directly determine fluid balance across microvascular endothelium. The classic Starling equation describing the balance of hydrostatic and colloid osmotic (oncotic) forces which determine filtration and reabsorption across the capillary wall includes four forces:where P c and P t are the hydrostatic pressures in the capillary lumen and tissue, respectively, and π c and π t are the corresponding lumen and tissue oncotic pressures. J v /A is the filtration rate per unit area, σ is the reflection coefficient to the plasma proteins and L p is the hydraulic conductivity of the vessel wall. This relation has been tested by changing P c and π c (only rarely by changing P t or π t ) and confirmed many times in both whole organ and isolated microvessels,
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick whose mechanical properties limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100–150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Endothelial cells (ECs) are covered by a surface glycocalyx layer that forms part of the barrier and mechanosensing functions of the blood-tissue interface. Removal of albumin in bathing media induces collapse or shedding of the glycocalyx. The electrostatic interaction between arginine residues on albumin, and negatively charged glycosaminoglycans (GAGs) in the glycocalyx have been hypothesized to stabilize the glycocalyx structure. Because albumin is one of the primary carriers of the phospholipid sphingosine-1-phosphate (S1P), we evaluated the alternate hypothesis that S1P, acting via S1P1 receptors, plays the primary role in stabilizing the endothelial glycocalyx. Using confocal microscopy on rat fat-pad ECs, we demonstrated that heparan sulfate (HS), chondroitin sulfate (CS), and ectodomain of syndecan-1 were shed from the endothelial cell surface after removal of plasma protein but were retained in the presence of S1P at concentrations of >100 nM. S1P1 receptor antagonism abolished the protection of the glycocalyx by S1P and plasma proteins. S1P reduced GAGs released after removal of plasma protein. The mechanism of protection from loss of glycocalyx components by S1P-dependent pathways was shown to be suppression of metalloproteinase (MMP) activity. General inhibition of MMPs protected against loss of CS and syndecan-1. Specific inhibition of MMP-9 and MMP-13 protected against CS loss. We conclude that S1P plays a critical role in protecting the glycocalyx via S1P1 and inhibits the protease activity-dependent shedding of CS, HS, and the syndecan-1 ectodomain. Our results provide new insight into the role for S1P in protecting the glycocalyx and maintaining vascular homeostasis.
Our previous experiments indicated that GTPases, other than RhoA, are important for the maintenance of endothelial barrier integrity in both intact microvessels of rats and mice and cultured mouse myocardial endothelial (MyEnd) cell monolayers. In the present study, we inhibited the endothelial GTPase Rac by Clostridium sordellii lethal toxin (LT) and investigated the relation between the degree of inhibition of Rac by glucosylation and increased endothelial barrier permeability. In rat venular microvessels, LT (200 ng/ml) increased hydraulic conductivity from a control value of 2.5 +/- 0.6 to 100.8 +/- 18.7 x 10-7 cm x s(-1) x cm H2O(-1) after 80 min. In cultured MyEnd cells exposed to LT (200 ng/ml), up to 60% of cellular Rac was glucosylated after 90 min, resulting in depolymerization of F-actin and interruptions of junctional distribution of vascular endothelial cadherin (VE-cadherin) and beta-catenin as well as the formation of intercellular gaps. To understand the mechanism by which inhibition of Rac caused disassembly of adherens junctions, we used laser tweezers to quantify VE-cadherin-mediated adhesion. LT and cytochalasin D, an actin depolymerizing agent, both reduced adhesion of VE-cadherin-coated microbeads to the endothelial cell surface, whereas the inhibitor of Rho kinase Y-27632 did not. Stabilization of actin filaments by jasplakinolide completely blocked the effect of cytochalasin D but not of LT on bead adhesion. We conclude that Rac regulates endothelial barrier properties in vivo and in vitro by 1) modulation of actin filament polymerization and 2) acting directly on the tether between VE-cadherin and the cytoskeleton.
We have extended the use of a microscope densitometric technique [Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H495-H505, 1983] to measure the solute permeability coefficients (Pa) of fluorescently labeled solutes in single perfused capillaries of frog mesentery. The method enables the transcapillary flux of solutes larger than 10,000 mol wt to be measured under conditions where the forces that determine both solute and water flows across the capillary wall are known. The Pa for alpha-lactalbumin (mol wt 14,176, Stokes radius 2.02 nm) increased from a mean value of 2.1 X 10(-6) cm/s when capillary pressure was 3.0 cmH2O (no net filtration) to greater than 4.0 X 10(-6) cm/s when capillary pressure was 15 cmH2O. Taking a value of 0.35 for the solvent drag reflection coefficient for alpha-lactalbumin, we conclude that the increased solute flux represents solvent drag through a water pathway with a hydraulic conductivity of 3.6 X 10(-7) cm X s-1 X cmH2O-1. Our data conforms to the hypothesis that alpha-lactalbumin is transported across the capillary wall by restricted diffusion and solvent drag in a pathway that carries 90% of the transcapillary water flow (the principle water pathway). In vitro and in vivo calibration experiments have been carried out to test the assumption that the measured fluorescent light intensity is proportional to the number of fluorescent molecules in the measuring window of the photometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.