Valence electron-energy loss spectroscopy ͑VEELS͒ in a dedicated scanning transmission electron microscope, vacuum ultraviolet spectroscopy and spectroscopic ellipsometry, and ab initio band structure calculations in the local density approximation have been used to determine the optical properties and the electronic structure of SrTiO 3. Assignments of the interband transitions in the electronic structure of bulk SrTiO 3 have been determined quantitatively by comparison of VEELS spectra with vacuum ultraviolet spectra and with the ab initio calculated densities of states. The experimentally determined indirect band gap energy is 3.25 eV, while the direct band gap energy is 3.75 eV. The conduction bands in SrTiO 3 correspond to the bands composed of mainly Ti 3d t 2g and e g states, followed at higher energies by the bands of Sr 4d t 2g and e g states, and free electron like states dominating at energies above 15 eV. The upper valence band ͑UVB͒ contains 18 electrons in dominantly O 2p states, hybridized with Ti and Sr states, and has a bandwidth of 5 eV. The interband transitions from the UVB to the Ti 3d bands and to the Sr 4d bands give rise to the transitions spanning from the indirect band gap energy of 3.25 eV up to 15 eV. The lower valence band contains 12 electrons in Sr 4p and O 2s states which are separated by 2 eV, while having a bandwidth of 5 eV. The interband transitions from the Sr 4p to the Ti 3d and Sr 4d bands give rise to transition energies spanning from 15 to 24 eV. Interband transitions from the O 2s band to the conduction bands appear at 26 eV. A very narrow band at Ϫ33 eV below the top of the valence band is composed of Sr 4s and Ti 3p states and contains eight electrons.
Our understanding of the "long range" electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces perspective, a large number of systems are described from which one can learn about these organizing forces and how to modulate them. The many practical systems that harness these nanoscale forces are then surveyed. The survey reveals not only the promise of new devices and materials, but also the possibility of designing them more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.