During kidney morphogenesis, the formation of nephrons begins when mesenchymal nephron progenitor cells aggregate and transform into epithelial vesicles that elongate and assume an S-shape. Cells in different regions of the S-shaped body subsequently differentiate into the morphologically and functionally distinct segments of the mature nephron. Here, we have used an allelic series of mutations to determine the role of the secreted signaling molecule FGF8 in nephrogenesis. In the absence of FGF8 signaling, nephron formation is initiated, but the nascent nephrons do not express Wnt4or Lim1, and nephrogenesis does not progress to the S-shaped body stage. Furthermore, the nephron progenitor cells that reside in the peripheral zone, the outermost region of the developing kidney, are progressively lost. When FGF8 signaling is severely reduced rather than eliminated, mesenchymal cells differentiate into S-shaped bodies. However, the cells within these structures that normally differentiate into the tubular segments of the mature nephron undergo apoptosis, resulting in the formation of kidneys with severely truncated nephrons consisting of renal corpuscles connected to collecting ducts by an abnormally short tubular segment. Thus, unlike other FGF family members, which regulate growth and branching morphogenesis of the collecting duct system, Fgf8 encodes a factor essential for gene regulation and cell survival at distinct steps in nephrogenesis.
In the mouse embryo, the splanchnic mesodermal cells of the anterior heart field (AHF) migrate from the pharynx to contribute to the early myocardium of the outflow tract (OT) and right ventricle (RV). Recent studies have attempted to distinguish the AHF from other precardiac populations, and to determine the genetic and molecular mechanisms that regulate its development. Here, we have used an Fgf8 lacZ allele to demonstrate that Fgf8 is expressed within the developing AHF. In addition, we use both a hypomorphic Fgf8 allele (Fgf8 neo ) and Cre-mediated gene ablation to show that Fgf8 is essential for the survival and proliferation of the AHF. Nkx2.5Cre is expressed in the AHF, primary heart tube and pharyngeal endoderm, while TnT-Cre is expressed only within the specified heart tube myocardium. Deletion of Fgf8 by Nkx2.5Cre results in a significant loss of the Nkx2.5 Cre lineage and severe OT and RV truncations by E9.5, while the remaining heart chambers (left ventricle and atria) are grossly normal. These defects result from significant decreases in cell proliferation and aberrant cell death in both the pharyngeal endoderm and splanchnic mesoderm. By contrast, ablation of Fgf8 in the TnT-Cre domain does not result in OT or RV defects, providing strong evidence that Fgf8 expression is crucial in the pharyngeal endoderm and/or overlying splanchnic mesoderm of the AHF at a stage prior to heart tube elongation. Analysis of downstream signaling components, such as phosphorylated-Erk and Pea3, identifies the AHF splanchnic mesoderm itself as a target for Fgf8 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.