Staircases of gravelly river terrace deposits in southern England occupy valleys typically underlain by frost-susceptible and brecciated bedrocks. The valleys developed during the Quaternary by alternating episodes of (1) brecciation, incision and planation through the bedrock, forming wide low-relief erosion surfaces; and (2) aggradation in braidplains of gravel a few meters thick that bury the erosion surfaces. A conceptual model to account for some of the terraces proposes that brecciation resulted from ice segregation in the ice-rich layer in the upper meters of Pleistocene permafrost, making them vulnerable to fluvial thermal erosion and therefore predisposing the bedrock to planation. The low gradients of the valleys were adjusted such that rivers transferred fine materials out of the basins but lacked the competence to remove gravel, which therefore accumulated within floodplains. The model challenges the prevailing view of incision during climate transitions. It attributes incision and planation to very cold and arid permafrost conditions, when rivers had limited discharges and hillslopes supplied limited volumes of stony debris into valley bottoms.
The fluvial sequences of the Milton and the Letchworth formations in the south Midlands of England and neighbouring regions represent at least two pre-existing rivers, the Milton and Brigstock streams, underlying Middle Pleistocene glacial sediments. The Milton Formation includes sand sourced from the Midlands bedrock. This implies that both streams were aligned in a northwest to southeast direction. This direction parallels the contemporaneous courses of the rivers Thames and Trent, the former turning towards the east and northeast to enter the North Sea. Their alignments indicate that the Milton and Letchworth streams formed left-bank tributaries of the Thames, joining the river in Hertfordshire and Essex, as illustrated in the article. This reconstruction has important implications for the interpretation of the proto-Soar river of the south Midlands, represented by the Baginton Formation. Although originally thought to represent a late Middle Pleistocene line, this southwest to northeast aligned system was reinterpreted as the headwaters of a pre-Anglian ‘Bytham river’, a1ligned towards East Anglia. However, recent work has shown that this river could not have existed in the pre-Anglian since there is no link between the Midlands and East Anglian spreads. Recent re-recognition that the Baginton Formation deposits do represent a later, post-Anglian drainage line is reinforced by the identification of the Milton and Letchworth streams, whose catchments occupied the area later drained by the proto-Soar. Overall, the main drainage alignment in southern England during the pre-Anglian period was dominated by northwest–southeast-draining consequent rivers adjusted to the regional geological dip. After widespread drainage disruption caused by the Anglian glaciation, northeast–southwest-orientated subsequent streams eroded frost-susceptible clay bedrock under periglacial and permafrost conditions, and beheaded the courses of some of the older consequent streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.