The limitations of the currently existing pansharpening quality indices are analyzed: the absolute difference between pixel values, mean shifting, and dynamic range change is frequently used as spatial fidelity measurement, but they may not correlate well with the actual change of image content; and spectral angle is a widely used metric for spectral fidelity, but the spectral angle remains the same if two vectors are multiplied by two individual constants, which means the average spectral angle between two multispectal images is zero even if pixel vectors are multiplied by different constants. Therefore, it is important to evaluate the quality of a pan-sharpened image under a task of its practical use and to assess spectral fidelity in the context of an image. In this letter, three data analysis techniques in linear unmixing, detection, and classification are applied to evaluate spectral information within a spatial scene context. It is demonstrated that those old but simplest approaches, i.e., Brovey and multiplicative (or after straightforward adjustment) methods, can generally yield acceptable data analysis results. Thus, it is necessary to consider the tradeoff between computational complexity, actual improvement on application, and hardware implementation when developing a pan-sharpening method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.