Background
Canine morbillivirus (canine distemper virus, CDV) persists as a serious threat to the health of domestic dogs and wildlife. Although studies have been conducted on the frequency and risk factors associated with CDV infection, there are no comprehensive data on the current epidemiological magnitude in the domestic dog population at regional and national levels. Therefore, we conducted a cross-sectional study and included our results in a meta-analysis to summarize and combine available data on the frequency and potential risk factors associated with CDV infection.
Methods
For the cross-sectional study, biological samples from dogs suspected to have canine distemper (CD) were collected and screened for viral RNA. Briefly, the PRISMA protocol was used for the meta-analysis, and data analyses were performed using STATA IC 13.1 software.
Results
CDV RNA was detected in 34% (48/141) of dogs suspected to have CD. Following our meta-analysis, 53 studies were selected for a total of 11,527 dogs. Overall, the pooled frequency of CDV positivity based on molecular and serological results were 33% (95% CI: 23–43) and 46% (95% CI: 36–57), respectively. The pooled subgroup analyses of clinical signs, types of biological samples, diagnostic methods and dog lifestyle had a wide range of CDV positivity (range 8–75%). Free-ranging dogs (OR: 1.44, 95% CI: 1.05–1.97), dogs >24 months old (OR: 1.83, 95% CI: 1.1–3) and unvaccinated dogs (OR: 2.92, 95% CI: 1.26–6.77) were found to be positively associated with CDV infection. In contrast, dogs <12 months old (OR: 0.36, 95% CI: 0.20–0.64) and dogs with a complete anti-CDV vaccination (OR: 0.18, 95% CI: 0.05–0.59) had a negative association.
Conclusion
Considering the high frequency of CDV positivity associated with almost all the variables analyzed in dogs, it is necessary to immediately and continuously plan mitigation strategies to reduce the CDV prevalence, especially in determined endemic localities.
The Mayaro virus is endemic to South America, and the possible involvement of Aedes spp. mosquitoes in its transmission is a risk factor for outbreaks of greater proportions. The virus causes a potentially disabling illness known as Mayaro fever, which is similar to that caused by the chikungunya virus. The cocirculation of both viruses, with their clinical and structural similarities, and the absence of prophylactic and therapeutic measures highlight the need for studies that seek to understand the Mayaro virus. Using approaches in silico, we identified an antigenic and specific epitope (p_MAYV4) in domain A of the E2 glycoprotein of the Mayaro virus. This epitope was theoretically predicted to be stable and exposed on the surface of the protein, where it showed key properties that enable its interaction with neutralizing antibodies. These characteristics make it an interesting target for the development of immunodiagnostic platforms. Molecular dynamics simulation-based structural analysis showed that the PHE95 residue in the E1 fusion loop region is conserved among Alphavirus family members. PHE95 interacts with the hydrophobic residues of the E2 glycoprotein to form a cage-shaped structure that is critical to assemble and stabilize the E1/E2 heterodimer. These results provide important insights useful for the advancement of diagnostic platforms and the study of therapeutic alternatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.