The main objective of this paper is to visualize profiles of older Europeans to better understand differing levels of dependency across Europe. Data comes from wave 6 of the Survey of Health, Ageing and Retirement in Europe (SHARE), carried out in 18 countries and representing over 124 million aged individuals in Europe. Using the information of around 30 mixed-type variables, we design four composite indices of wellbeing for each respondent: self-perception of health, physical health and nutrition, mental agility, and level of dependency. Next, by implementing the k-prototypes clustering algorithm, profiles are created by combining those indices with a collection of socio-economic and demographic variables about the respondents. Five profiles are established that segment the dataset into the least to the most individuals at risk of health and socio-economic wellbeing. The methodology we propose is wide enough to be extended to other surveys or disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.