The use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry’s carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development.
The combined use of calcined clays and limestone in the ternary system LC3 enables up to 50% of clinker substitution without affecting the performance. Low grade calcined clays are rich in iron. If calcined in an oxygen rich atmosphere, they turn to red. Cement producers avoid selling cement with a color different to the traditional. This paper proposes a method to modify color during calcination by controlling the atmosphere during the cooling. At calcination, the high temperature favors the formation of magnetite even at oxidizing conditions. However, during the cooling phase, magnetite can convert back to hematite if oxygen is available and the calcined material will have a reddish color. The procedure to control color consists of injecting liquid fuel at the carcass of the kiln while the calcined material exits, so that it combusts and exhausts the oxygen available during the cooling process. The procedure was successfully implemented at a pilot kiln in India. Controlling the calcination atmosphere enabled the production of a black calcined clay, instead of a red material. The reactivity and properties of both red and black clay are very similar, and no side effects have impacted properties of LC3 cements produced with the treated clay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.