Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic L-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway.
Background
While the influence of testosterone levels on vulnerability to affective disorders is not straightforward, research suggests this hormone may confer some degree of resiliency in men. We recently demonstrated a role for the dentate gyrus in mediating testosterone’s protective effects on depressive-like behavior in gonadectomized male rats. Here, testosterone may exert its effects through androgen receptor-mediated mechanisms or via local aromatization to estradiol.
Methods
Gonadectomized male rats were implanted with a placebo, testosterone, or estradiol pellet, and subsequent protective anxiolytic- and antidepressant-like effects of testosterone and its aromatized metabolite, estradiol, were then investigated in the open field and sucrose preference tests, respectively. Moreover, their influence on gene expression in the hippocampus was analyzed by genome-wide cDNA microarray analysis. Finally, the contribution of testosterone’s aromatization within the dentate gyrus was assessed by local infusion of the aromatase inhibitor, fadrozole, whose efficacy was confirmed by LC-MS/MS.
Results
Both hormones had antidepressant-like effects associated with a substantial overlap in transcriptional regulation, particularly in synaptic plasticity- and mitogen-activated protein kinase pathway-related genes. Further, chronic aromatase inhibition within the dentate gyrus blocked the protective effects of testosterone.
Conclusions
Both testosterone and estradiol exhibit anxiolytic- and antidepressant-like effects in gonadectomized male rats, while similarly regulating critical mediators of these behaviors, suggesting common underlying mechanisms. Accordingly, we demonstrated that testosterone’s protective effects are mediated, in part, by its aromatization in the dentate gyrus. These findings thus provide further insight into a role for estradiol in mediating the protective anxiolytic- and antidepressant-like effects of testosterone.
African American men face a stark prostate cancer (PCa)‐related health disparity, with the highest incidence and mortality rates compared to other races. Additional and innovative measures are warranted to reduce this health disparity. Here, we focused on the identification of a novel serum exosome‐based “protein signature” for potential use in the early detection and better prognosis of PCa in African American men. Nanoparticle tracking analyses showed that compared to healthy individuals, exosome concentration (number/ml) was increased by ~3.2‐fold (P ˂ 0.05) in the sera of African American men with PCa. Mass spectrometry‐based proteomic analysis of serum exosomes identified seven unique and fifty‐five overlapping proteins (up‐ or downregulated) in African Americans with PCa compared to healthy African Americans. Furthermore, ingenuity pathway analyses identified the inflammatory acute‐phase response signaling as the top pathway associated with proteins loaded in exosomes from African American PCa patients. Interestingly, African American PCa E006AA‐hT cells secreted exosomes strongly induced a proinflammatory M2‐phenotype in macrophages and showed calcium response on sensory neurons, suggesting a neuroinflammatory response. Additionally, proteomic analyses showed that the protein Isoform 2 of Filamin A has higher loading (2.6‐fold) in exosomes from African Americans with PCa, but a lesser loading (0.6‐fold) was observed in exosomes from Caucasian men with PCa compared to race‐matched healthy individuals. Interestingly, TCGA and Taylor's dataset as well as IHC analyses of PCa tissue showed a lower Filamin A expression in tissues of PCa patients compared with normal subjects. Overall, these results support the usefulness of serum exosomes to noninvasively detect inflammatory phenotype and to discover novel biomarkers associated with PCa in African American men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.