A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.
We uncovered β-galactosynthase–β-mannosynthase dual-activity of β-galactosidase (A. oryzae) that could revolutionize chemoenzymatic glycan and NDOs syntheses.
Tinospora rumphii(T. rumphii) is a folkloric medicinal plant that is widely distributed in Asia and Africa. It has been widely used by locals to treat many diseases including jaundice, which is a manifestation of liver damage. We investigated the action ofT. rumphiicrude extract together with zinc sulphate, a known tumor modulator, on hepatic injuries induced by intraperitoneal (i.p) injections of quinoline on albino mice. The hepatotoxic effect was assessed by bilirubin concentration in the blood serum, while the genotoxic effect was determined by single-cell gel electrophoresis (SCGE). The mice orally fed with the crude extracts, following quinoline exposure, had reduced serum bilirubin concentration and DNA damage. Mice treated with Zinc sulphate, on the other hand, had remarkably reduced DNA damage on hepatocytes. Our findings showed that hepatoprotective potential ofT. rumphiiextract is dose-dependent and that utilization of the extract as medicinal remedy must be strictly monitored, while zinc was proven to reverse genotoxic effect of quinoline. This study unraveled the potential ofT. rumphiiextract and zinc as important hepatoprotective agents for future treatment of hepatic damage caused by chemotherapeutic agents used in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.