We report the existence of a 'placental clock', which is active from an early stage in human pregnancy and determines the length of gestation and the timing of parturition and delivery. Using a prospective, longitudinal cohort study of 485 pregnant women we have demonstrated that placental secretion of corticotropin-releasing hormone (CRH) is a marker of this process and that measurement of the maternal plasma CRH concentration as early as 16-20 weeks of gestation identifies groups of women who are destined to experience normal term, preterm or post-term delivery. Further, we report that the exponential rise in maternal plasma CRH concentrations with advancing pregnancy is associated with a concomitant fall in concentrations of the specific CRH binding protein in late pregnancy, leading to a rapid increase in circulating levels of bioavailable CRH at a time that coincides with the onset of parturition, suggesting that CRH may act directly as a trigger for parturition in humans.
SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) [Website] is a proposed all-sky spectroscopic survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. SPHEREx will scan a series of Linear Variable Filters systematically across the entire sky. The SPHEREx data set will contain R=40 spectra fir 0.75< λ <4.1µm and R=150 spectra for 4.1< λ <4.8µm for every 6.2 arcsecond pixel over the entire-sky. In this paper, we detail the extra-galactic and cosmological studies SPHEREx will enable and present detailed systematic effect evaluations. We also outline the Ice and Galaxy Evolution Investigations. I. SPHEREX MISSION OVERVIEWSPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer; PI: J. Bock) is a proposed all-sky survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. All of these exciting science themes are addressed by a single survey, with a single instrument, providing the first near-infrared spectroscopy of the complete sky. In this paper, we will focus on the cosmological science enabled by SPHEREx and outline the Galactic Ices and the Epoch of Reionization (EOR) scientific investigations.SPHEREx will probe the origin of the Universe by constraining the physics of inflation, the superluminal expansion of the Universe that took place some 10 −32 s after the Big Bang. SPHEREx will study its imprints in the threedimensional large-scale distribution of matter by measuring galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will investigate the origin of water and biogenic molecules in all phases of planetary system formation -from molecular clouds to young stellar systems with protoplanetary disks -by measuring absorption spectra to determine the abundance and composition of ices toward > 2 × 10 4 Galactic targets. Interstellar ices are the likely source for water and organic molecules, the chemical basis of life on Earth, and knowledge of their abundance is key to understanding the formation of young planetary systems as well as the prospects for life on other planets.SPHEREx will chart the origin and history of galaxy formation through a deep survey mapping large-scale structure. This technique measures the total light produced by all galaxy populations, complementing studies based on deep galaxy counts, to trace the history of galactic light production from the present day to the first galaxies that ended the cosmic dark ages.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 ≤ λ ≤...
The environment in which the fetus develops is critical for its survival and long-term health. The regulation of normal human fetal growth involves many multidirectional interactions between the mother, placenta, and fetus. The mother supplies nutrients and oxygen to the fetus via the placenta. The fetus influences the provision of maternal nutrients via the placental production of hormones that regulate maternal metabolism. The placenta is the site of exchange between mother and fetus and regulates fetal growth via the production and metabolism of growth-regulating hormones such as IGFs and glucocorticoids. Adequate trophoblast invasion in early pregnancy and increased uteroplacental blood flow ensure sufficient growth of the uterus, placenta, and fetus. The placenta may respond to fetal endocrine signals to increase transport of maternal nutrients by growth of the placenta, by activation of transport systems, and by production of placental hormones to influence maternal physiology and even behavior. There are consequences of poor fetal growth both in the short term and long term, in the form of increased mortality and morbidity. Endocrine regulation of fetal growth involves interactions between the mother, placenta, and fetus, and these effects may program long-term physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.