Young Sepia officinalis (0-5 months) were studied in the laboratory and in the sea, and their appearance and behaviour compared with that of adult animals. Cuttlefish lay large eggs and the hatchlings are miniature replicas of the adults. From the moment of hatching they show body patterns as complex as those of adults and far more elaborate than those shown by most juvenile cephalopods. There are 13 body patterns: 6 of these are ‘chronic’ (lasting for minutes or hours) and 7 are ‘acute’ (lasting for seconds or minutes). The patterns are built up from no fewer than 34 chromatic, 6 textural, 8 postural and 6 locomotor components, used in varying combinations and intensities of expression. Nearly all these components occur in young animals: 26 of the chromatic, all the textural and locomotor, and 6 of the postural components. Nevertheless, patterning does change with age and we have recorded this and correlated the changes with behaviour. The components are built up from units, which themselves comprise four elements organized in precise relation to one another: chromatophores, iridophores, leucophores and skin muscles. The chromatophores are always especially important: they are muscular organs innervated directly from the brain and controlled ultimately by the highest centres (optic lobes). The areas in the Sepia brain that control patterning are already well developed at hatching, for the appearance of the skin is as much part of the brain’s motor program as is the attitude of the arms or fins, or the posture of the entire animal. The iridophores and leucophores develop later and are especially important constituents of many adult patterns, notably the Intense Zebra of the mature male. Experiments confirm that patterning is neurally controlled and apparently mediated exclusively by the visual system. Young cuttlefish use patterning primarily for concealment, utilizing such strategies as general colour resemblance, disruptive coloration, obliterative shading, shadow elimination, disguise and adaptive behaviour. Older animals also conceal themselves but increasingly use patterns for signalling, both interspecifically (warning or ‘deimatic’ displays) and intraspecifically (sexual signalling). Laboratory-reared cuttlefish were released in the sea and observed underwater. They quickly and effectively concealed themselves on the substrate; it was easy for the human observer to lose them and many passing fish behaved as if they were not there. One local predator, Serranus cabrilla , was observed to attack them and no fewer than 35 attacks were recorded, only six of which were successful. Laboratory-reared cuttlefish apparently distinguished between these predators and other, non-predatory, fish the first time they encountered them in nature.
Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra-and interspecific behavioural interactions including camouflage.
Technologies that use stretchable materials are increasingly important, yet we are unable to control how they stretch with much more sophistication than inflating balloons. Nature, however, demonstrates remarkable control of stretchable surfaces; for example, cephalopods can project hierarchical structures from their skin in milliseconds for a wide range of textural camouflage. Inspired by cephalopod muscular morphology, we developed synthetic tissue groupings that allowed programmable transformation of two-dimensional (2D) stretchable surfaces into target 3D shapes. The synthetic tissue groupings consisted of elastomeric membranes embedded with inextensible textile mesh that inflated to within 10% of their target shapes by using a simple fabrication method and modeling approach. These stretchable surfaces transform from flat sheets to 3D textures that imitate natural stone and plant shapes and camouflage into their background environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.