Key generation from the randomness of wireless channels is a promising alternative to public key cryptography for the establishment of cryptographic keys between any two users. This paper reviews the current techniques for wireless key generation. The principles, performance metrics and key generation procedure are comprehensively surveyed. Methods for optimizing the performance of key generation are also discussed. Key generation applications in various environments are then introduced along with the challenges of applying the approach in each scenario. The paper concludes with some suggestions for future studies.
This paper presents a thorough experimental study on key generation principles, i.e., temporal variation, channel reciprocity, and spatial decorrelation, through a testbed constructed by using wireless open-access research platform. It is the first comprehensive study through: 1) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber, and an indoor office environment, which represents little, rich, and moderate multipath, respectively; 2) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; and 3) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial to key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform.INDEX TERMS Physical layer security, key generation, wireless communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.