Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses.
Background: The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.