Currently, there exists a growing demand for individual building mapping in regions of rapid urban growth in less-developed countries. Most existing methods can segment buildings but cannot discriminate adjacent buildings. Here, we present a new convolutional neural network architecture (CNN) called U-net-id that performs building instance segmentation. The proposed network is trained with WorldView-3 satellite RGB images (0.3 m) and three different labeled masks. The first is the building mask; the second is the border mask, which is the border of the building segment with 4 pixels added outside and 3 pixels inside; and the third is the inner segment mask, which is the segment of the building diminished by 2 pixels. The architecture consists of three parallel paths, one for each mask, all starting with a U-net model. To accurately capture the overlap between the masks, all activation layers of the U-nets are copied and concatenated on each path and sent to two additional convolutional layers before the output activation layers. The method was tested with a dataset of 7563 manually delineated individual buildings of the city of Joanópolis-SP, Brazil. On this dataset, the semantic segmentation showed an overall accuracy of 97.67% and an F1-Score of 0.937 and the building individual instance segmentation showed good performance with a mean intersection over union (IoU) of 0.582 (median IoU = 0.694).
Abstract. This work investigates the practical issue of mapping existing GIS to the OpenGIS standards. We describe the data models used in three systems (MGE, ARC/INFO and SPRING) and analyse the problems involved when mapping them to OpenGIS. Our conclusion is that the OpenGIS standard has not been defined in a formal and unequivocal way, and therefore, there are indefinitions and competing alternatives for mapping existing GIS systems into the proposed standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.