Jumping plant lice (Hemiptera: Psylloidea) are considered important vectors of plant diseases and also economically important pests in agriculture and forest ecosystems. Three psyllid species Psyllopsis repens Loginova, 1963, Psyllopsis securicola Loginova, 1963, and Psyllopsis machinosus Loginova, 1963 associated with the ash tree Fraxinus are morphologically very similar. So far, their distinction has been possible only by comparing their male and female genitalia. In this research, forewing shape and size characteristics, sexual dimorphism and their allometric effects, using geometric morphometric analysis, were examined for identification purposes. The results showed significant differences in wing shape and size between the species studied. Based on the results, two species P. machinosus and P. securicola can be differentiated with the vein M1+2, as in P. securicola the vein M1+2 is located between Rs and M3+4 veins, but the vein M1+2 is closer to the vein M3+4 in P. machinosus; also, P. repens can be differentiated from the two species P. machinosus and P. securicola by vein M. Hence, the veins M1+2, M3+4, Rs and M were the most important wing characters for discrimination of the three species, especially in the field. The analysis also showed significant differences in wing shape and size between male and female of the three species, and the allometric analysis showed that significant shape differences still remain in constant size in P. machinosus and P. repens. Geometric changes in the forewings of both sexes for the three species are illustrated.
Species of Agonoscena (Hemiptera: Aphalaridae) are key pests of pistachio in all of the most important pistachio producing countries in the Old World. The efficiency and accuracy of DNA barcoding for the identification of Agonoscena species were tested using mitochondrial cytochrome c oxidase subunit 1 (mtCO1) and cytochrome b (cytb) gene sequences. Moreover, morphometric sexual dimorphism was studied. Finally, the potential geographical distribution of Agonoscena pistaciae, the most important pistachio pest, was calculated using the MaxEnt model. Similar relationships of clustering were found in the morphometric analysis and the molecular analyses with mtCO1 and cytb genes, with A. bimaculata and A. pistaciae being closely related, and A. pegani constituting their sister group. Although the results showed that the cytb gene is a better marker for barcoding in this group, the mtCO1 gene clearly separates the three psyllid species making mtCO1 suitable for diagnostic purposes. A geometric morphometric analysis showed that the distance between landmark number 7 (bifurcation of vein M) to the fore margin of the forewing, and the distance between landmarks number 6 (apex of vein Cu1b) and 11 (wing base), are the most important geometric characters for diagnosing the studied species. Moreover, the forewing shape of males vs females is similar in A. pistaciae and A. bimaculata but differs significantly in A. pegani. In the ecological niche modeling of the distribution of A. pistaciae, the most important contribution was made by the variable ‘minimum temperature of coldest period’. The most suitable areas for A. pistaciae are restricted to Eastern, Southern and some parts of Central Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.