ObjectiveRecent studies into the antifungal activity of NK-cells against the Aspergillus fumigatus have presented differing accounts on their mode of antifungal activity. One of these mechanisms proposed that NK-cells may kill the fungus via the direct effects of exposure to Interferon gamma (IFN-γ).ResultsIn this study we investigated the direct antifungal effects of recombinant human IFN-γ against a range of pathogenic fungi by measuring cellular damage using an XTT-based assay and cell viability through plate counts. It was found that 32 pg/ml of IFN-γ exhibited a significant but small antifungal effect on A. fumigatus (p = 0.02), Aspergillus flavus (p = 0.04) and Saccharomyces cerevisiae (p = 0.03), inhibiting growth by 6, 11 and 17% respectively. No significant inhibitory effects were observed in Candida species (p > 0.05 for all species tested) or Cryptococus neoformans (p = 0.98). Short term exposure (3 h) to a combination of amphotericin B (1 µg/ml) and IFN-γ (32 pg/ml) increased the effectiveness of amphotericin B against A. fumigatus and S. cerevisiae but not Candida albicans. These data suggest that IFN-γ does not possess strong antifungal activity but can enhance the effect of amphotericin B under some testing conditions against Aspergillus species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.