Abstract-The need for combined task and motion planning in robotics is well understood. Solutions to this problem have typically relied on special purpose, integrated implementations of task planning and motion planning algorithms. We propose a new approach that uses off-the-shelf task planners and motion planners and makes no assumptions about their implementation. Doing so enables our approach to directly build on, and benefit from, the vast literature and latest advances in task planning and motion planning. It uses a novel representational abstraction and requires only that failures in computing a motion plan for a high-level action be identifiable and expressible in the form of logical predicates at the task level. We evaluate the approach and illustrate its robustness through a number of experiments using a state-of-the-art robotics simulator and a PR2 robot. These experiments show the system accomplishing a diverse set of challenging tasks such as taking advantage of a tray when laying out a table for dinner and picking objects from cluttered environments where other objects need to be re-arranged before the target object can be reached.
The problem of planning for a robot that operates in environments containing a large number of objects, taking actions to move itself through the world as well as to change the state of the objects, is known as task and motion planning (TAMP). TAMP problems contain elements of discrete task planning, discrete–continuous mathematical programming, and continuous motion planning and thus cannot be effectively addressed by any of these fields directly. In this article, we define a class of TAMP problems and survey algorithms for solving them, characterizing the solution methods in terms of their strategies for solving the continuous-space subproblems and their techniques for integrating the discrete and continuous components of the search. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Tasks in mobile manipulation planning often require thousands of individual motions to complete. Such tasks require reasoning about complex goals as well as the feasibility of movements in configuration space. In discrete representations, planning complexity is exponential in the length of the plan. In mobile manipulation, parameters for an action often draw from a continuous space, so we must also cope with an infinite branching factor. Task and motion planning (TAMP) methods integrate logical search over high-level actions with geometric reasoning to address this challenge. We present an algorithm that searches the space of possible task and motion plans and uses statistical machine learning to guide the search process. Our contributions are as follows: 1) we present a complete algorithm for TAMP; 2) we present a randomized local search algorithm for plan refinement that is easily formulated as a Markov decision process (MDP); 3) we apply reinforcement learning (RL) to learn a policy for this MDP; 4) we learn from expert demonstrations to efficiently search the space of highlevel task plans, given options that address different (potential) infeasibilities; and 5) we run experiments to evaluate our system in a variety of simulated domains. We show significant improvements in performance over prior work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.