New layered anisotropic infrared semiconductors, black arsenic-phosphorus (b-AsP), with highly tunable chemical compositions and electronic and optical properties are introduced. Transport and infrared absorption studies demonstrate the semiconducting nature of b-AsP with tunable bandgaps, ranging from 0.3 to 0.15 eV. These bandgaps fall into the long-wavelength infrared regime and cannot be readily reached by other layered materials.
We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.
Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.
Two-dimensional colloidal halide perovskite nanocrystals are promising materials for light emitting applications. In addition, they can be used as components to create a variety of materials through physical and chemical transformations. Recent studies focused on nanoplatelets that are able to self-assemble and transform on solid substrates. Yet, the mechanism behind the process and the atomic arrangement of their assemblies remain unclear. Here, we present the transformation of self-assembled stacks of CsPbBr3 nanoplatelets in solution, capturing the different stages of the process by keeping the solutions at room temperature and monitoring the nanocrystal morphology over a period of a few months. Using ex-situ transmission electron microscopy and surface analysis, we demonstrate that the transformation mechanism can be understood as oriented attachment, proceeding through the following steps: i) desorption of the ligands from the particles surfaces, causing the merging of nanoplatelet stacks, which first form nanobelts; ii) merging of neighboring
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.