Aim This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land.Location The study area is defined at the largest scale by Landsat Scene 108-70 that covers a total land area of 23,134 km 2 in the North Kimberley Bioregion of north-west Australia, including the settlement of Kalumburu, coastline between Vansittart Bay in the west and the mouth of the Berkeley River in the east, and stretching approximately 200 km inland.Methods Two approaches are applied. First, a 10-year fire history (1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999) derived from previous study of satellite (Landsat-MSS) remote sensing imagery is analysed for broad regional patterns. And secondly, a 2-year ground-based survey of burning along major access roads leading to an Aboriginal community is used to show fine-scale burning patterns. anova and multiple regression analyses are used to determine the influence of year, season, geology, tenure, distance from road and distance from settlement on fire patterns.Results Satellite data indicated that an average of 30.8% (±4.4% SEM) of the study area was burnt each year with considerable variability between years. Approximately 56% of the study area was burnt on three or more occasions over the 10-year period. A slightly higher proportion of burning occurred on average in the late dry season (17.2 ± 3.6%), compared with the early dry season (13.6 ± 3.3%). The highest fire frequency occurred on basalt substrates, on pastoral tenures, and at distances 5-25 km from roads. Three-way anova demonstrated that geological substrate and land use were the most significant factors influencing fire history, however a range of smaller interactions were also significant. Analysis of road transects, originating from an Aboriginal settlement, showed that the timing of fire and geology type were the most significant factors affecting the pattern of area burnt. Of the total transect area, 28.3 ± 2.9% was burnt annually with peaks in burning occurring into the dry season months of June, August and September. Basalt uplands (81.2%) and lowlands (30.1%) had greater areas burnt than sandstone (12.3%) and sands (17.7%).Main conclusions Anthropogenic firing is constrained by two major environmental determinants; climate and substrate. Seasonal peaks in burning activity in both the early and late dry season relate to periods of optimal fireweather conditions. Substrate factors (geology, soils and physiognomy) influence vegetation-fuel characteristics and the movement of fire in the landscape. Basalt hills overwhelmingly supported the most frequent wildfire regime in the study
BackgroundDespite the demonstrated utility of GIS for health applications, there are perceived problems in low resource settings: GIS software can be expensive and complex; input data are often of low quality. This study aimed to test the appropriateness of new, inexpensive and simple GIS tools in poorly resourced areas of a developing country. GIS applications were trialled in pilot studies based on mapping of health resources and health indicators at the clinic and district level in the predominantly rural province of Nusa Tenggara Timur in eastern Indonesia. The pilot applications were (i) rapid field collection of health infrastructure data using a GPS enabled PDA, (ii) mapping health indicator data using open source GIS software, and (iii) service availability mapping using a free modelling tool.ResultsThrough contextualised training, district and clinic staff acquired skills in spatial analysis and visualisation and, six months after the pilot studies, they were using these skills for advocacy in the planning process, to inform the allocation of some health resources, and to evaluate some public health initiatives.ConclusionsWe demonstrated that GIS can be a useful and inexpensive tool for the decentralisation of health data analysis to low resource settings through the use of free and simple software, locally relevant training materials and by providing data collection tools to ensure data reliability.
The paper reports on the development of a decadal fire history, 1990–1999, derived from Landsat imagery, and associated assessment of landscape-scale patterns, in a remote, sparsely human-populated region of the high rainfall zone of monsoonal north-western Australia. The assembled fire history confirms observations, derived from coarser-scale imagery, that substantial areas of the North Kimberley are burnt each year. The annual mean extent of burning was 31% (albeit involving marked inter-annual variability), with most burning occurring in the latter part of the dry season under relatively severe fire weather conditions. Extent of burning was found to be associated with intensity of landuse; most burning occurred on pastoral lands, particularly in association with more fertile basalt soils. Based on previous modelling studies, predicted effects of contemporary fire regimes include increased development of woody regeneration size-classes, especially on non-basalt substrates. In contrast, on sandstone-derived substrata, fire interval data indicate that longer-lived obligate-seeder shrub species are likely to be suppressed and ultimately displaced by contemporary fire regimes. Such observations are supported by recent evidence of regional collapse of the long-lived obligate seeder tree species, Callitris intratropica. Collectively, assembled data point to the need to undertake a thorough appraisal of the status of regional biota in this remote, ostensibly ecologically intact region.
Substantial areas of eastern Indonesia are semi-arid (with a pronounced dry season extending from April to November) with extensive areas of uncultivated vegetation dominated by savanna grasslands and woodlands. These are highly fire-prone, despite high population densities reliant on intensive subsistence agriculture and an official national fire policy that prohibits all burning. To date, no regional studies have been undertaken that reliably assess the seasonal extent and patterning of prescribed burning and wildfire. Focusing on two case studies in east Sumba (7000 km2) and central Flores (3000 km2) in the eastern Indonesian province of Nusa Tenggara Timur, the present paper addresses: (1) the efficacy of applying standard remote sensing and geographic information system tools as developed for monitoring fire patterns in savanna landscapes of adjacent northern Australia, for (2) describing the seasonal patterning of burning at village and broader regional scales in 2003 and 2004. Despite recurring cloudiness, which significantly affected daily fire detection of ‘hotspots’ from Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer sensors, fire mapping from Landsat imagery was undertaken successfully to reveal: (1) fires burnt an annual average of 29% of eastern Sumba (comprising mostly grassland savanna), and 11% of central Flores (with large forested areas); (2) most fire extent occurred in savanna grassland areas, and significantly also in cultivated lands and small remnant patches of forest; (3) most fire activity occurred under harsh, late dry season conditions; and (4) while the great majority of individual fires were less than 5 ha, some late dry season fires were hundreds of hectares in extent. The potential routine application of different image sensors for fire mapping and hotspot detection is considered in discussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.