An oscillating water column device enables the conversion of wave energy into electrical energy via wave interaction with a semi-submerged chamber coupled with a turbine for power take off. This present work concentrates on the wave interaction with the semi-submerged chamber, whereby a shore based oscillating water column (OWC) is studied experimentally to examine energy efficiencies for power take-off. The wave environment considered comprises plane progressive waves of steepnesses ranging from kA=0.01 to 0.22 and water depth ratios varying from kh=0.30 to 3.72, where k, A, and h denote the wave number, wave amplitude, and water depth, respectively. The key feature of this experimental campaign is a focus on the influence of front wall geometry on the OWC’s performance. More specifically, this focus includes: front wall draught, thickness, and aperture shape of the submerged front wall. We make use of a two-dimensional inviscid theory for an OWC for comparative purposes and to explain trends noted in the experimental measurements. The work undertaken here has revealed a broad banded efficiency centered about the natural frequency of the OWC. The magnitude and shape of the efficiency curves are influenced by the geometry of the front wall. Typical peak magnitude resonant efficiencies are in the order of 70%.
An oscillating water column device enables the conversion of wave energy into electrical energy via wave interaction with a semi-submerged chamber coupled with a turbine for power take off. This present work concentrates on the wave interaction with the semi-submerged chamber, whereby a shore based oscillating water column (OWC) is studied experimentally to examine energy efficiencies for power take-off. The wave environment considered consists of plane progressive waves of steepnesses ranging from kA = 0.01 to 0.22 and water depth ratios varying from kh = 0.30 to 3.72, where k, A and h denote the wave number, wave amplitude and water depth respectively. The key feature of this experimental campaign is a study on the influence of geometrical parameters of the front wall on the OWC’s performance. More specifically, these parameters include: front wall draught; thickness; and aperture shape. We make use of a two-dimensional inviscid theory for an OWC for comparative purposes and to explain trends noted in the experimental measurements. The work undertaken here has revealed a broad banded efficiency centred about the natural frequency of the OWC. The magnitude and shape of the efficiency curves are influenced by the geometry of the front wall. Typical resonant efficiencies of the OWC are in the order of 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.