Ligand-gated ion channels are an ionotropic receptor subtype characterized by the binding of an extracellular ligand, followed by the transient passage of ions through a transmembrane pore. Ligand-gated ion channels are commonly subcategorized into three superfamilies: purinoreceptors, glutamate receptors, and Cys-loop receptors. This classification is based on the differing topographical morphology of the receptors, which in turn confers functional differences. Ligand-gated ion channels have a diverse spatial and temporal expression which implicate them in key cellular processes. Given that the transcellular electrochemical gradient is finely tuned in eukaryotic cells, any disruption in this homeostasis can contribute to aberrancies, including altering the activity of pro-tumorigenic molecular pathways, such as the MAPK/ERK, RAS, and mTOR pathways. Ligand-gated ion channels therefore serve as a potential targetable system for cancer therapeutics. In this review, we analyze the role that each of the three ligand-gated ion channel superfamilies has concerning tumor proliferation and as a target for the treatment of cancer symptomatology.
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12–15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood–brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Healthcare workers (HCWs) need to be vaccinated against COVID-19 because they care for vulnerable patients. Hesitation to receiving the COVID-19 vaccine stems from the argument of bodily autonomy, novel mRNA vaccine technology, and conspiracy theories. However, vaccinations may prevent thousands of hospitalizations and deaths. HCWs have previously complied with other required vaccinations to care for children, elderly, and immunocompromised patients. Yet, COVID-19 vaccination mandates in the healthcare setting have been faced with resistance and subsequent staffing shortages. As HCWs display their hesitation to the vaccine, the community loses trust in its efficacy and safety. Speculation on pharmaceutical profiteering has also contributed to vaccine mistrust. As the pandemic continues, the healthcare field must decide on a course of action: adhere to vaccination mandates and cope with decreased staffing, repeal vaccination mandates to recover staff, rely on personal protective equipment (PPE) alone for protection, or do nothing and expect survival through herd immunity. To date, the United States has chosen to mandate COVID-19 vaccinations for any healthcare worker employed by Medicare and/or Medicaid-accepting facilities, allowing allergy and religious exemptions. This COVID-19 vaccination mandate for HCWs ethically protects the vulnerable people who HCWs vow to care for.
In birds, the steroid hormone corticosterone (CORT) increases in response to real or perceived threats to homeostasis. A long‐term record of CORT exposure is recorded in feathers when the hormone is incorporated into the keratinized tissue, and then preserved when the mature feather is cut off from the blood supply. The opportunity to retrospectively assess the exposure of an individual to stressors by measuring the amount of CORT in a feather has generated excitement amongst avian ecologists. However, this technique is relatively new and requires additional validations. In this study, we performed experiments in wild caught European starlings Sturnus vulgaris to test whether: 1) CORT deposition in the feather depends on time of day and 2) whether an ecologically relevant stressor (unpredictable food access) causes a change in feather CORT. We found that exogenous CORT was incorporated into feathers during the day and the night. However, there was no difference in feather CORT between birds with unpredictable access to food and those with continuous access, indicating that feather CORT might not always detect ecologically relevant stressors.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.