Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physicochemical observations. Samples and observations were collected monthly over 3 years at a welldescribed ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible 'keystone' species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.
Bacteriophages typically have small genomes 1 and depend on their bacterial hosts for replication 2 . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.Phages-viruses that infect bacteria-are considered distinct from cellular life owing to their inability to carry out most biological processes required for reproduction. They are agents of ecosystem change because they prey on specific bacterial populations, mediate lateral gene transfer, alter host metabolism and redistribute bacterially derived compounds through cell lysis 2-4 . They spread antibiotic resistance 5 and disperse pathogenicity factors that cause disease in humans and animals 6,7 . Most knowledge about phages is based on laboratorystudied examples, the vast majority of which have genomes that are a few tens of kb in length. Widely used isolation-based methods select against large phage particles, and they can be excluded from phage concentrates obtained by passage through 100-nm or 200-nm filters 1 . In 2017, only 93 isolated phages with genomes that were more than 200 kb in length were published 1 . Sequencing of whole-community DNA can uncover phage-derived fragments; however, large genomes can still escape detection owing to fragmentation 8 . A new clade of human-and animal-associated megaphages was recently described on the basis of genomes that were manually curated to completion from metagenomic datasets 9 . This finding prompted us to carry out a more-comprehensive analysis of microbial communities to evaluate the prevalence, diversity and ecosystem distribution of phages with large genomes. Previously, phages with genomes of more than 200 kb have been referred to as 'jumbophages' 1 or, in the case of phages with genomes of more than 500 kb, as megaphages 9 . As the set reconstructed here span both size ranges we refer to them simply as 'huge phage...
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0-5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus-bacteria relationships were more cross-linked than protist-bacteria relationships, suggestive of increased taxonomic specificity in virus-bacteria relationships. We also found that 80% of bacterial-protist and 74% of bacterial-viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance.
Time-series are critical to understanding long-term natural variability in the oceans. Bacterial communities in the euphotic zone were investigated for over a decade at the San Pedro Ocean Time-series station (SPOT) off southern California. Community composition was assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and coupled with measurements of oceanographic parameters for the surface ocean (0-5 m) and deep chlorophyll maximum (DCM, average depth B30 m). SAR11 and cyanobacterial ecotypes comprised typically more than one-third of the measured community; diversity within both was temporally variable, although a few operational taxonomic units (OTUs) were consistently more abundant. Persistent OTUs, mostly Alphaproteobacteria (SAR11 clade), Actinobacteria and Flavobacteria, tended to be abundant, in contrast to many rarer yet intermittent and ephemeral OTUs. Association networks revealed potential niches for key OTUs from SAR11, cyanobacteria, SAR86 and other common clades on the basis of robust correlations. Resilience was evident by the average communities drifting only slightly as years passed. Average Bray-Curtis similarity between any pair of dates was B40%, with a slight decrease over the decade and obvious near-surface seasonality; communities 8-10 years apart were slightly more different than those 1-4 years apart with the highest rate of change at 0-5 m between communities o4 years apart. The surface exhibited more pronounced seasonality than the DCM. Inter-depth Bray-Curtis similarities repeatedly decreased as the water column stratified each summer. Environmental factors were better predictors of shifts in community composition than months or elapsed time alone; yet, the best predictor was community composition at the other depth (that is, 0-5 m versus DCM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.