This paper presents symbolic time series analysis (STSA) of multi-dimensional measurement data for pattern identification in dynamical systems. The proposed methodology is built upon concepts derived from Information Theory and Automata Theory. The objective is not merely to classify the time series patterns but also to identify the variations therein. To achieve this goal, a symbol alphabet is constructed from raw data through partitioning of the data space. The maximum entropy method of partitioning is extended to multi-dimensional space. The resulting symbol sequences, generated from time series data, are used to model the dynamical information as finite state automata and the patterns are represented by the stationary state probability distributions. A novel procedure for determining the structure of the finite state automata, based on entropy rate, is introduced. The diversity among the observed patterns is quantified by a suitable measure. The efficacy of the STSA technique for pattern identification is demonstrated via laboratory experimentation on nonlinear systems.
Rotor bar faults have been of interest for the past several decades as being one of the major causes of failure in induction machines. This paper provides a powerful yet simple methodology for the detection of these faults. The methodology utilizes a combination of machine modeling concepts along with wavelet and symbolic dynamic analysis to ensure early detection with a low false alarm rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.