A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single-stage turbine. In the experimental investigation, tests were performed to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity, and temperature. In the computational simulations, an Euler-Lagrangian two-stage approach is used in obtaining numerical solutions to the threedimensional compressible Reynolds-Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDFs) were developed to represent experimentally based correlations for particle surface interaction models and TBC erosion rates models. UDFs were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics and TBC erosion rates on the blade surfaces. Computational results are presented in a commercial turbine and a NASA-designed automotive turbine. The similarities between the erosion patterns in the two turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5% of the stator blade span to represent the flow cooling of the combustor liner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.