Respiratory syncytial virus (RSV) is an important respiratory pathogen in infants and children worldwide. Although RSV typically causes mild upper respiratory infections, it frequently causes severe morbidity and mortality, especially in premature infants and children with other chronic diseases. Treatment of RSV is limited by a lack of effective antiviral treatments; however, ribavirin has been used in complicated cases, along with the addition of intravenous immune globulin in specific patients. Vaccination strategies for RSV prevention are heavily studied, but only palivizumab (Synagis®) has been approved for use in the United States in very select patient populations. Research is ongoing in developing additional vaccines, along with alternative therapies that may help prevent or decrease the severity of RSV infections in infants and children. To date, we have not seen a decrement in RSV morbidity and mortality with our current options; therefore, there is a clear need for novel RSV preventative and therapeutic strategies. In this review, we discuss the current and evolving trends in RSV treatment for infants and children.
These findings represent further evidence of the association between factor H dysfunction and HUS.
Background Mechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously showed that young CF children with secondhand smoke exposure (SHSe) have increased susceptibility to respiratory infections. We aimed to define the impact of SHSe and other external factors upon the fecal bacteriome in early CF. Methods Twenty CF infants and children were enrolled, clinical data recorded, and hair nicotine measured as an objective surrogate of SHSe. Fecal samples were collected at clinic visits and bacteriome 16S rRNA gene sequencing performed. Results SHSe was associated with increased alpha diversity and increased relative abundance of Acinetobacter and Akkermansia, along with decreased Bifidobacterium and Lactobacillus. Recent antibiotic exposure predicted bacterial population structure in children less than 2 years of age and was associated with decreased Bacteroides relative abundance. Age was the strongest predictor of overall fecal bacterial composition and positively associated with Blautia and Parabacteroides. Weight for length was negatively associated with Staphylococcus relative abundance. Conclusions SHSe and other external factors such as antibiotics appear to alter fecal bacterial composition in young CF children, but the strongest predictor of overall composition was age. These findings have implications for understanding the intestinal microbiome in young CF children.
BackgroundMechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously demonstrated that children with CF and parental-reported secondhand smoke exposure (SHSe) have increased susceptibility to bacterial infections. SHSe hinders arachidonic acid (AA) metabolites that mediate immune function in patients without CF, and may influence CF immune dysfunction. We aimed to define SHSe’s impact on inflammation mediators and infection in children with CF.MethodsSeventy-seven children with CF <10 years of age (35 infants <1 year; 42 children 1–10 years) were enrolled and hair nicotine concentrations measured as an objective surrogate of SHSe. AA signalling by serum and macrophage lipidomics, inflammation using blood transcriptional profiles and in vitro macrophage responses to bacterial infection after SHSe were assessed.ResultsHair nicotine concentrations were elevated in 63% of patients. Of the AA metabolites measured by plasma lipidomics, prostaglandin D2 (PGD2) concentrations were decreased in children with CF exposed to SHSe, and associated with more frequent hospitalisations (p=0.007) and worsened weight z scores (p=0.008). Children with CF exposed to SHSe demonstrated decreased expression of the prostaglandin genes PTGES3 and PTGR2 and overexpression of inflammatory pathways. These findings were confirmed using an in vitro model, where SHSe was associated with a dose-dependent decrease in PGD2 and increased methicillin-resistant Staphylococcus aureus survival in human CF macrophages.ConclusionsInfants and young children with CF and SHSe have altered AA metabolism and dysregulated inflammatory gene expression resulting in impaired bacterial clearance. Our findings identified potential therapeutic targets to halt early disease progression associated with SHSe in the young population with CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.