The provision of resources and services for scientific workflow applications using a multi-cloud architecture and a pay-per-use rule has recently gained popularity within the cloud computing research domain. This is because workflow applications are computation intensive. Most of the existing studies on workflow scheduling in the cloud mainly focus on finding an ideal makespan or cost. Nevertheless, there are other important quality of service metrics that are of critical concern in workflow scheduling such as reliability and resource utilization. In this respect, this paper proposes a new multi-objective scheduling algorithm with Fuzzy resource utilization (FR-MOS) for scheduling scientific workflow based on particle swarm optimization (PSO) method. The algorithm minimizes cost and makespan while considering reliability constraint. The coding scheme jointly considers task execution location and data transportation order. Simulation experiments reveal that FR-MOS outperforms the basic MOS over the PSO algorithm.
Cloud computing is an innovative technology that deploys networks of servers, located in wide remote areas, for performing operations on a large amount of data. In cloud computing, a workflow model is used to represent different scientific and web applications. One of the main issues in this context is scheduling large workflows of tasks with scientific standards on the heterogeneous cloud environment. Other issues are particular to public cloud computing. These include the need for the user to be satisfied with the quality of service (QoS) parameters, such as scalability and reliability, as well as maximize the end-users resource utilization rate. This paper surveys scheduling algorithms based on particle swarm optimization (PSO). This is aimed at assisting users to decide on the most suitable QoS consideration for large workflows in infrastructure as a service (IaaS) cloud applications and mapping tasks to resources. Besides, the scheduling schemes are categorized according to the variant of the PSO algorithm implemented. Their objectives, characteristics, limitations and testing tools have also been highlighted. Finally, further directions for future research are identified.
The revolution of IoT and its capabilities to serve various fields led to generating a large amount of data for processing. Tasks that require an instant response, especially with sensitive delay tasks send to the fog node due to the close distance, and the complex tasks transfer to the cloud data center for its huge computation and storage. However, sending tasks to the fog decreases the transmission delay. Still, it increases the energy consumption of the end users, while transferring tasks to the cloud reduces users' energy consumption but increases the transmission delay due to the long distance; besides, assigning tasks to appropriate resources compatible with task requirements. These are the main challenges in cloudfog computing that need to improve. Thus, this study proposed a Multi-Objectives Grey Wolf Optimizer (MGWO) algorithm to reduce the QoS objectives delay and energy consumption and held in the fog broker, which plays an essential role in distributing tasks. The simulation result verifies the effectiveness of the MGWO algorithm compared to the state-of-the-art algorithms in reducing delay and Energy consumption.INDEX TERMS Cloud-fog computing, delay, energy consumption, grey wolf optimizer, Internet of Things, meta-heuristic, task scheduling.
Wireless sensor networks (WSN) have been among the most prevalent wireless innovations over the years exciting new Internet of Things (IoT) applications. IoT based WSN integrated with Internet Protocol IP allows any physical objects with sensors to be connected ubiquitously and send real-time data to the server connected to the Internet gate. Security in WSN remains an ongoing research trend that falls under the IoT paradigm. A WSN node deployed in a hostile environment is likely to open security attacks such as Sybil attack due to its distributed architecture and network contention implemented in the routing protocol. In a Sybil attack, an adversary illegally advertises several false identities or a single identity that may occur at several locations called Sybil nodes. Therefore, in this paper, we give a survey of the most up-to-date assured methods to defend from the Sybil attack. The Sybil attack countermeasures includes encryption, trust, received signal indicator (RSSI), encryption and artificial intelligence. Specifically, we survey different methods, along with their advantages and disadvantages, to mitigate the Sybil attack. We discussed the lesson learned and the future avenues of study and open issues in WSN security analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.