Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10−15 for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.
Purpose Aside from Gleason sum few factors accurately identify the subset of prostate cancer (PCa) patients at high risk for metastatic progression. We hypothesized that epigenetic alterations could distinguish prostate tumors with life-threatening potential. Experimental Design Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from a population-based (n = 430) and a replication (n = 80) cohort of PCa patients followed prospectively for at least five years. Metastasis was confirmed by positive bone scan, MRI, CT or biopsy, and death certificates confirmed cause of death. AUC, partial AUC (pAUC, 95% specificity), and P-value criteria were used to select differentially methylated CpG sites that robustly stratify patients with metastatic-lethal from non-recurrent tumors, and which were complementary to Gleason sum. Results Forty-two biomarkers stratified patients with metastatic-lethal versus non-recurrent PCa in the discovery cohort, and eight of these CpGs replicated in the validation cohort based on a significant (P <0.05) AUC (range: 0.66-0.75) or pAUC (range: 0.007-0.009). The biomarkers that improved discrimination of patients with metastatic-lethal PCa include CpGs in five genes (ALKBH5, ATP11A, FHAD1, KLHL8, and PI15) and three intergenic regions. In the validation dataset the AUC for Gleason sum alone (0.82) significantly increased with the addition of four individual CpGs (range: 0.86-0.89; all P <0.05). Conclusion Eight differentially methylated CpGs that distinguish patients with metastatic-lethal from non-recurrent tumors were validated. These novel epigenetic biomarkers warrant further investigation as they may improve prognostic classification of patients with clinically localized PCa and provide new insights on tumor aggressiveness.
The mtDNA variation of 198 Aleuts, as well as North American and Asian populations drawn from the literature, were analyzed to reconstruct the Aleuts' genetic prehistory and to investigate their role in the peopling of the Circumarctic region. From median-joining network analysis, three star-like clusters were identified in the Aleuts within the following subhaplogroups: A3, A7 (an Aleut-specific subclade of A3), and D2. Mismatch analyses, neutrality test scores, and coalescent time estimates for these three components provided evidence of two expansion events, one occurring at approximately 19,900 B.P. and the other at 5,400 B.P. Based on these findings and evidence from the archaeological data, four general models for the genetic prehistory of the Aleutian Island chain are proposed: 1) biological continuity involving a kin-structured peopling of the archipelago; 2) intrusion and expansion of a non-native biface-producing population dominated by subhaplogroup D2; 3) amalgamation of Arctic Small Tool tradition peoples characterized by D2 with an older Anangula substratum; and 4) biological continuity with significant gene flow from neighboring populations of the Alaskan mainland and Kodiak Island. The Aleut mtDNAs are consistent with the Circumarctic pattern by the fixation of A3 and D2, and the exhibition of depressed diversity levels relative to Amerind and Siberian groups. The results of this study indicate a broad postglacial reexpansion of Na-Dene and Esko-Aleuts from reduced populations within northern North America, with D2 representing a later infusion of Siberian mtDNAs into the Beringian gene pool.
OBJECTIVEAd36, a human adenovirus, increases adiposity but improves glycemic control in animal models. Similarly, natural Ad36 infection is cross-sectionally associated with greater adiposity and better glycemic control in humans. This study compared longitudinal observations in indices of adiposity (BMI and body fat percentage) and glycemic control (fasting glucose and insulin) in Ad36-infected versus uninfected adults.RESEARCH DESIGN AND METHODSBaseline sera from Hispanic men and women (n = 1,400) were screened post hoc for the presence of Ad36-specific antibodies. Indices of adiposity and glycemic control at baseline and at ∼10 years past the baseline were compared between seropositive and seronegative subjects, with adjustment for age and sex. In addition to age and sex, indices of glycemic control were adjusted for baseline BMI and were analyzed only for nondiabetic subjects.RESULTSSeropositive subjects (14.5%) had greater adiposity at baseline, compared with seronegative subjects. Longitudinally, seropositive subjects showed greater adiposity indices but lower fasting insulin levels. Subgroup analyses revealed that Ad36-seropositivity was associated with better baseline glycemic control and lower fasting insulin levels over time in the normal-weight group (BMI ≤25 kg/m2) and longitudinally, with greater adiposity in the overweight (BMI 25–30 kg/m2) and obese (BMI >30 kg/m2) men. Statistically, the differences between seropositive and seronegative individuals were modest in light of the multiple tests performed.CONCLUSIONSThis study strengthens the plausibility that in humans, Ad36 increases adiposity and attenuates deterioration of glycemic control. Panoptically, the study raises the possibility that certain infections may modulate obesity or diabetes risk. A comprehensive understanding of these under-recognized factors is needed to effectively combat such metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.